2,257 research outputs found

    Locally constrained homomorphisms on graphs of bounded treewidth and bounded degree.

    Get PDF
    A homomorphism from a graph G to a graph H is locally bijective, surjective, or injective if its restriction to the neighborhood of every vertex of G is bijective, surjective, or injective, respectively. We prove that the problems of testing whether a given graph G allows a homomorphism to a given graph H that is locally bijective, surjective, or injective, respectively, are NP-complete, even when G has pathwidth at most 5, 4 or 2, respectively, or when both G and H have maximum degree 3. We complement these hardness results by showing that the three problems are polynomial-time solvable if G has bounded treewidth and in addition G or H has bounded maximum degree

    Utilization of NASA Lewis mobile terminals for the Hermes satellite

    Get PDF
    The high power of the Hermes satellite enables two-way television and voice communication with small ground terminals. The Portable Earth Terminal (PET) and the Transportable Earth Terminal (TET) were developed and built by NASA-Lewis to provide communications capability to short-term users. The NASA-Lewis mobile terminals are described in terms of vehicles and onboard equipment, as well as operation aspects, including use in the field. The section on demonstrations divides the uses into categories of medicine, education, technology and government. Applications of special interest within each category are briefly described

    Improved accuracies for satellite tracking

    Get PDF
    A charge coupled device (CCD) camera on an optical telescope which follows the stars can be used to provide high accuracy comparisons between the line of sight to a satellite, over a large range of satellite altitudes, and lines of sight to nearby stars. The CCD camera can be rotated so the motion of the satellite is down columns of the CCD chip, and charge can be moved from row to row of the chip at a rate which matches the motion of the optical image of the satellite across the chip. Measurement of satellite and star images, together with accurate timing of charge motion, provides accurate comparisons of lines of sight. Given lines of sight to stars near the satellite, the satellite line of sight may be determined. Initial experiments with this technique, using an 18 cm telescope, have produced TDRS-4 observations which have an rms error of 0.5 arc second, 100 m at synchronous altitude. Use of a mosaic of CCD chips, each having its own rate of charge motion, in the focal place of a telescope would allow point images of a geosynchronous satellite and of stars to be formed simultaneously in the same telescope. The line of sight of such a satellite could be measured relative to nearby star lines of sight with an accuracy of approximately 0.03 arc second. Development of a star catalog with 0.04 arc second rms accuracy and perhaps ten stars per square degree would allow determination of satellite lines of sight with 0.05 arc second rms absolute accuracy, corresponding to 10 m at synchronous altitude. Multiple station time transfers through a communications satellite can provide accurate distances from the satellite to the ground stations. Such observations can, if calibrated for delays, determine satellite orbits to an accuracy approaching 10 m rms

    Cluster Approximation for the Farey Fraction Spin Chain

    Full text link
    We consider the Farey fraction spin chain in an external field hh. Utilising ideas from dynamical systems, the free energy of the model is derived by means of an effective cluster energy approximation. This approximation is valid for divergent cluster sizes, and hence appropriate for the discussion of the magnetizing transition. We calculate the phase boundaries and the scaling of the free energy. At h=0h=0 we reproduce the rigorously known asymptotic temperature dependence of the free energy. For h0h \ne 0, our results are largely consistent with those found previously using mean field theory and renormalization group arguments.Comment: 17 pages, 3 figure

    Linear-time algorithms for scattering number and Hamilton-connectivity of interval graphs.

    Get PDF
    We prove that for all inline image an interval graph is inline image-Hamilton-connected if and only if its scattering number is at most k. This complements a previously known fact that an interval graph has a nonnegative scattering number if and only if it contains a Hamilton cycle, as well as a characterization of interval graphs with positive scattering numbers in terms of the minimum size of a path cover. We also give an inline image time algorithm for computing the scattering number of an interval graph with n vertices and m edges, which improves the previously best-known inline image time bound for solving this problem. As a consequence of our two results, the maximum k for which an interval graph is k-Hamilton-connected can be computed in inline image time

    Eclipse radius measurements

    Get PDF
    Methods for predicting the path edges and reducing observations of total solar eclipses for determining variations of the solar radius are described. Analyzed observations of the 1925 January eclipse show a 0.7 (arc second) decrease in the solar radius during the past fifty years

    Marker based Thermal-Inertial Localization for Aerial Robots in Obscurant Filled Environments

    Full text link
    For robotic inspection tasks in known environments fiducial markers provide a reliable and low-cost solution for robot localization. However, detection of such markers relies on the quality of RGB camera data, which degrades significantly in the presence of visual obscurants such as fog and smoke. The ability to navigate known environments in the presence of obscurants can be critical for inspection tasks especially, in the aftermath of a disaster. Addressing such a scenario, this work proposes a method for the design of fiducial markers to be used with thermal cameras for the pose estimation of aerial robots. Our low cost markers are designed to work in the long wave infrared spectrum, which is not affected by the presence of obscurants, and can be affixed to any object that has measurable temperature difference with respect to its surroundings. Furthermore, the estimated pose from the fiducial markers is fused with inertial measurements in an extended Kalman filter to remove high frequency noise and error present in the fiducial pose estimates. The proposed markers and the pose estimation method are experimentally evaluated in an obscurant filled environment using an aerial robot carrying a thermal camera.Comment: 10 pages, 5 figures, Published in International Symposium on Visual Computing 201

    Parameterized complexity of coloring problems: Treewidth versus vertex cover

    Get PDF
    AbstractWe compare the fixed parameter complexity of various variants of coloring problems (including List Coloring, Precoloring Extension, Equitable Coloring, L(p,1)-Labeling and Channel Assignment) when parameterized by treewidth and by vertex cover number. In most (but not all) cases we conclude that parametrization by the vertex cover number provides a significant drop in the complexity of the problems

    Heat transfer measurement of turbulent spots in a hypersonic blunt-body boundary layer

    Full text link
    This paper presents data on turbulent-spot propagation in the hypersonic boundary-layer flow over a blunted cylindrical body. Data are based on the measurement of time-dependent surface heat transfer rates using gauges positioned as arrays in either th
    corecore