
Theoretical Computer Science 412 (2011) 2513–2523

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Parameterized complexity of coloring problems: Treewidth versus
vertex cover✩

Jiří Fiala a,∗, Petr A. Golovach b, Jan Kratochvíl a
a Department of Applied Mathematics and Institute for Theoretical Computer Science (ITI),1 Charles University, Prague, Czech Republic
b School of Engineering and Computing Sciences, Durham University, South Road, Durham DH1 3LE, UK

a r t i c l e i n f o

Keywords:
Graph colorings
Graph labelings
Parameterized complexity
Vertex cover

a b s t r a c t

We compare the fixed parameter complexity of various variants of coloring problems
(including List Coloring, Precoloring Extension, Equitable Coloring, L(p, 1)-Labeling
and Channel Assignment) when parameterized by treewidth and by vertex cover number.
In most (but not all) cases we conclude that parametrization by the vertex cover number
provides a significant drop in the complexity of the problems.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

An important aspect in parameterized complexity theory is the choice of the parameter for a problem. In particular,
structural parameterizations measure the structural properties of the input. One of the best investigated structural
parameters for graph problems is the treewidth of the input graph (see e.g. surveys [4,6]). While many problems are F PT
when parameterized by the treewidth, there are problems that are N P -hard even for graphs of small fixed treewidth
(or even for trees). Also, there are problems that can be solved in polynomial time for graphs of bounded treewidth, but
the exponent of the polynomial depends on the width (i.e., they are in XP if parameterized by the treewidth). Some of
these problems are known to be W-hard, when parameterized by treewidth, which contributes to the fine structure of the
F PT hierarchy. New results in this direction on F PT -complexity of variants of graph coloring and domination problems
were recently obtained in [16,10].

For problems that are difficult for graphs of bounded treewidth, it is interesting to consider different structural
parameterizations that impose stronger restrictions. Fellows et al. proposed to study parametrization by the vertex cover
number and they applied it to graph layout problems [15]. The goal of this paper is to pursue the road opened in [15] and
apply this point of view to several variants of graph coloring problems, including problems stemming from the area of
Frequency Assignment.

The vertex cover number of a graph G is the minimum size of a set W of vertices of G such that I = V (G) \ W is
an independent set. It is easy to see that the treewidth of a graph never exceeds its vertex cover number (an argument
will be given in the next section), and thus parametrization by the vertex cover number has a chance to make problems
easier. And indeed, for most (but not all) of the coloring and labeling problems considered in this paper, we conclude that
parametrization by vertex cover number does make the problems more tractable.

✩ The extended abstract of this paper was presented at the 6th Annual Conference on Theory and Applications of Models of Computation TAMC’09
(Fiala et al., 2009) [19].
∗ Corresponding author.

E-mail addresses: fiala@kam.mff.cuni.cz (J. Fiala), petr.golovach@durham.ac.uk (P.A. Golovach), honza@kam.mff.cuni.cz (J. Kratochvíl).
1 ITI is supported by the Ministry of Education of the Czech Republic as project 1M0545.

0304-3975/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2010.10.043

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82019751?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.tcs.2010.10.043
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:fiala@kam.mff.cuni.cz
mailto:petr.golovach@durham.ac.uk
mailto:honza@kam.mff.cuni.cz
http://dx.doi.org/10.1016/j.tcs.2010.10.043

2514 J. Fiala et al. / Theoretical Computer Science 412 (2011) 2513–2523

Recall that a (proper) vertex coloring of a graph is an assignment c of colors to the vertices of the graph such that for any
two adjacent vertices u and v, c(u) ≠ c(v). The set Vi of all vertices colored by a color i is called the i-th color class. Many
variants of graph coloring have been intensively studied. We will consider the following decision problems:

List Coloring
Input: A graph G and for each vertex v ∈ V (G), a list L(v) of admissible colors.
Question: Is there a vertex coloring c with c(v) ∈ L(v) for each v?

Precoloring Extension
Input: A graph G, a subset U ⊆ V (G) of precolored vertices, a precoloring cU of vertices of U , and a positive integer r .
Question: Is there a vertex coloring c of Gwhich extends cU (i.e. c(v) = cU(v) for each v ∈ U), using at most r colors?

(This is a special version of List Coloringwhen each list has either one element or contains all colors.)

Equitable Coloring
Input: A graph G and a positive integer r .
Question: Is there a vertex coloring c of G using at most r colors such that the sizes of any two color classes differ by at most
one?

All these variants of graph coloring are NP-hard in the general case [27,3] and it is natural to explore their F PT -
complexity under different parameterizations as well [5].

Distance constrained labeling of graphs is a concept generalizing graph coloring that stems from the FrequencyAssignment
Problem. Here the colors (we prefer to call them labels) are nonnegative integers and requirements are posed on the
difference of labels assigned to vertices that are close to each other [28,8]. In particular, given numbers p and q, an
L(p, q)-labeling of span k of a graph is a labeling of its vertices by integers from {0, 1, . . . , k} such that the labels of adjacent
vertices differ by at least p, and the labels of vertices at distance two in the graph differ by at least q. Thus we obtain the
following associated problem (and we will also consider its List- and Prelabeling Extension variants defined in an obvious
way):

L(p, q)-Labeling
Input: A graph G and a positive integer λ.
Question: Is there an L(p, q)-labeling l of G of the span λ?

This concept was intensively studied both for its practical motivation and for interesting theoretical properties. E.g.,
L(2, 1)-Labeling is polynomial time solvable for trees [9,23] but N P -complete for graphs of treewidth two [17]. Moreover,
for every p > q > 1, p and q relatively prime, L(p, q)-labeling becomes N P -complete already for trees [18].

In this paper, we concentrate on the case q = 1; in this case it is simply required that labels assigned to vertices at
distance two are distinct. Note also that in the case p = q = 1, L(1, 1)-labeling coincides with coloring the second distance
power of the input graph (just beware of the offset 1 between the span of a labeling and the number of colors in a coloring),
also previously intensively studied [2,13,14]. Also because of this meaningful correlation, we treat the case p = q = 1 in
more detail and consider List L(1, 1)-Labeling and L(1, 1)-Prelabeling Extension problems as well.

Finally, we consider the Channel Assignment problem whose input is a graph equipped with integer weights on its
edges, and the task is to assign nonnegative integers to its vertices so that the difference of the labels assigned to a pair
of adjacent vertices is greater than or equal to the weight of the corresponding edge, while minimizing the span of the
assignment (i.e., the largest label used).

Channel Assignment
Input: A graph G, a function w : E(G) → N, and a positive integer λ.
Question: Is there a so called channel assignment of G, i.e. a mapping f : V (G) → {0, . . . , λ} satisfying |f (u)− f (v)| ≥ w(uv)
for every edge uv ∈ E(G)?

This formulation also stems from the Frequency Assignment Problem, and e.g., the L(p, q)-Labeling problem with input
graph G coincides with Channel Assignment for the second distance power of G and weights having only two values — p
and q. However, note that the transition from G to its second power does not preserve bounded treewidth, so the F PT -
complexity results do not follow from one another. Yet Channel Assignment is known N P -hard for graphs of treewidth at
most three [26] (note only that in this case the size of the input is measured as n + logw where n is the number of vertices
and w the maximum weight of an edge).

A comparison of known and new results on the fixed parameter complexity of the above mentioned problems for
parametrization by treewidth versus parametrization by vertex cover number is summarized in Table 1.

It is readily seen that in most cases, parametrization by vertex cover number makes a problem easier with respect to
parametrization by treewidth, typically making the complexity drop from W[1]-hard to F PT (Precoloring Extension,
Equitable Coloring, L(p, 1)-Labeling for p = 0 or 1), but sometimes even from N P -complete to F PT (L(2, 1)-Labeling
and L(1, 1)-Prelabeling Extension). The complexity of the Channel Assignment problem drops from N P -complete to
XP . For the List Coloring problem, we achieve matching lower bounds on the complexity, but for both parameterizations
W[1] membership is open. The hardest of the considered problems proves to be List L(1, 1)-Labeling that remains
N P -complete even when parameterized by the vertex cover number.

J. Fiala et al. / Theoretical Computer Science 412 (2011) 2513–2523 2515

Table 1
Complexity of coloring and labeling problems parameterized by treewidth and
vertex cover, the results of this paper being denoted by [∗]. In the last four rows,
k is the parameter (treewidth or vertex cover number).

Treewidth Vertex cover

List Coloring W[1]-hard [16] W[1]-hard [15, ∗]
Precoloring Extension W[1]-hard [16] F PT [∗]
Equitable Coloring W[1]-hard [16] F PT [∗]
L(0, 1)-Labeling W[1]-hard [∗] F PT [∗]
L(1, 1)-Labeling W[1]-hard [∗] F PT [∗]
L(2, 1)-Labeling N P -c for k ≥ 2 [17] F PT [∗]
List L(1, 1)-Labeling N P -c for k ≥ 2 [∗] N P -c for k ≥ 4 [∗]
L(1, 1)-Prelabeling Extension N P -c for k ≥ 2 [∗] F PT [∗]
Channel Assignment N P -c for k ≥ 3 [26] in XP [∗]

2. Notation and basic definitions

A parameterized problem with the input size n and a parameter k is called fixed parameter tractable (F PT) if it can
be solved in time f (k) · nc , where f is a function only depending on k and c is a constant. The basic complexity class for
fixed parameter intractability is W[1]. To show that a problem is W[1]-hard, it is necessary to construct a parameterized
reduction from a known W[1]-hard problem. One of the basic conjectures of the parameterized complexity theory is that
F PT ≠ W[1], and if this conjecture holds, then W[1]-hard problems cannot be solved by F PT -algorithms. We refer to
the book of Downey and Fellows [11] for an excellent exposition of this concept.

We consider finite undirected graphs without loops or multiple edges. The vertex set of a graph G is denoted by V (G)
and its edge set by E(G). A set S ⊆ V (G) of pairwise adjacent vertices is called a clique and a set of pairwise nonadjacent
vertices is called an independent set. For v ∈ V (G), by NG(v) = {u ∈ V (G): uv ∈ E(G)} we denote the open neighborhood of
v, and NG(S) =


v∈S N(v) \ S denotes the open neighborhood of a set S ⊆ V (G). The closed neighborhood of a vertex v is

NG[v] = NG(v) ∪ {v}. The index G is often omitted if it is clear from the context.
A tree decomposition of a graph G is a pair (X, T) where T is a tree whose vertices we will call nodes and X = ({Xi | i ∈

V (T)}) is a collection of subsets (usually referred to as bags) of V (G) such that


i∈V (T) Xi = V (G), both endpoints of each
edge of G belong to some bag, and for each vertex of G, the bags containing it induce a connected subtree in T . The width of
the decomposition equalsmaxi∈V (T){|Xi|−1} and the treewidth ofG is theminimumwidth over all of its tree decompositions.
We use notation tw(G) to denote the treewidth of a graph G.

A subset W of the vertex set of a graph G is a vertex cover of G if every edge of G has at least one end-vertex in W . The
minimum size of a vertex cover is called the vertex cover number and is denoted by vc(G). The vertex cover of the minimum
cardinality can be constructed by an F PT -algorithm [7]. Given a vertex cover W , a suitable tree decomposition is a star
with the central bag beingW and the leaf-nodes carrying bagsW ∪ {x} for x ∈ V (G) − W . Therefore, tw(G) ≤ vc(G).

3. Complexity of coloring problems

3.1. Complexity of the List Coloring and Precoloring Extension problems

It has beenmentionedwithout proof in the conclusion of [15] that List Coloring remainsW[1]-hardwhenparameterized
by the vertex cover number. We note that the problem remains hard even for a special class of split graphs. (A graph G is a
split graph if its vertex set can be partitioned into a clique and an independent set.)

As for any chordal graph, the treewidth of a split graph is less by one than the size of its maximum clique, and so the size
of the clique part of G is an upper bound on both tw(G) and (vc(G)).

Theorem 1. The List Coloring problem is W[1]-hard for split graphs with the size of the maximum clique being the parameter.

Proof. We reduce the Weighted Antimonotone 2-CNF Satisfiability problem, which is known to be W[1]-complete
[12,11]:

Instance: A Boolean formula φ in conjunctive normal form, where each clause consists of two negated variables.
Parameter: k.
Question: Does φ have a satisfying assignment of weight k (i.e., exactly k variables have value true)?

Let x1, . . . , xn be the variables of φ, and suppose that C1, . . . , Cj are its clauses. We start our construction with a clique of
k vertices u1, . . . , uk with identical lists of colors {1, . . . , n}. For each clause Cj = xp ∨ xq, a vertex vj with the list of possible
colors {p, q} is added and joined by edges to all vertices u1, . . . , uk. Denote the obtained graph by G. Clearly, G is a split graph
and {u1, . . . , uk} is its clique of size k. We claim that φ has a satisfying assignment of weight k if and only if G allows a list
coloring.

2516 J. Fiala et al. / Theoretical Computer Science 412 (2011) 2513–2523

Suppose that the formula φ has a satisfying assignment such that variables xi1 , . . . , xik have value true. We color the
vertices u1, . . . , uk by colors i1, . . . , ik. Each clause Cj = xp ∨ xq contains a literal, say xp, with value true. Then we color
vertex vj by the color p. Since xp = false, this color was not used for coloring of u1, . . . , uk, and the list coloring is correct.

Assume now that G has a list coloring, and the vertices u1, . . . , uk are colored by k different colors i1, . . . , ik. The choice
of xi = true only for i ∈ {i1, . . . , ik} provides a satisfying assignment of φ of weight k. �

Since the size of the maximum clique of a split graph differs from its vertex cover number by no more than one, it also
follows (perhaps somewhat surprisingly), that List Coloring of split graphs isW[1]-hardwhen parameterized by the vertex
cover number. In contrast with the closely related Precoloring Extension:

Theorem 2. The Precoloring Extension problem is F PT when parameterized by the vertex cover number.

Proof. Suppose that W is a vertex cover of G, and let |W | = k. Let I = V (G) \ W and let X be the set of non-precolored
vertices of I . Finally let cU : V (G) \ X −→ {1, . . . , r} be the given precoloring.

We reduce the problem to a list coloring problem for the subgraph H of G induced by W ∪ X . For each vertex v ∈ X , we
set L(v) := {1, . . . , r}. If w ∈ W is precolored, then we set L(w) := {cU(w)}, otherwise L(w) := {1, . . . , r} \ cU(N(w)), i.e.,
we exclude the colors of precolored neighbors of w. Clearly, G allows a precoloring extension with at most r colors if and
only if H has a feasible list coloring. We distinguish two cases.

If r > k then vertices of X are irrelevant since they can be always list-colored by a greedy algorithm. Similarly for vertices
w ∈ W such that |L(w)| ≥ k. Hence H is L-colorable if and only if the subgraph F of H induced by the vertices of W with
|L(w)| < k is L-colorable. But this can be checked in timeO(kk) since F has atmost k vertices and each of them can be colored
by at most k colors.

If r ≤ k then |L(w)| ≤ k for any vertex w ∈ W . We consider all colorings of W , and their extensions to H by the greedy
algorithm. SinceW has at most kk colorings, the running time is O(kk+1n).

SinceH can be constructed in timeO(r(n+m))where n = |V (G)| andm = |E(G)|, the total running time of the algorithm
is O(kk+1n + r(n + m)). �

3.2. Complexity of the Equitable Coloring problem

The third variant of graph coloring wewant to explore is Equitable Coloring. When showing that this problem becomes
easy when parameterized by the vertex cover number, we utilize the approach used in [15]. The main idea is to reduce our
problem to the integer linear programming problem that isF PT whenparameterized by the number of variables. Formally,
we use the following problem:
p-Variable Integer Linear Programming Feasibility
Input: A q × pmatrix A with integer elements, an integer vector b ∈ Zq.
Parameter: p.
Question: Is there a vector x ∈ Zp such that A · x ≤ b?
It was proved by Lenstra [25] that this problem is F PT , and this algorithmic result was improved afterwards by different
authors (see, e. g., a survey [1]). We are going to use it in the following form:

Theorem 3 ([25,24,20]). The p-Variable Integer Linear Programming Feasibility problem can be solved usingO(p2.5p+o(p)
·L)

arithmetic operations and space polynomial in L, where L is the number of bits of the input.

We now focus on the Equitable Coloring problem.

Theorem 4. The Equitable Coloring problem is F PT when parameterized by the vertex cover number.

Proof. Let W be a vertex cover of size k of a graph G on n vertices, and let {I1, . . . , Is} be the partition of I = V (G) \ W
according to their neighborhoods, i.e., such that any two vertices u, v ∈ I belong to the same Ii if and only if N(u) = N(v).
Note that s ≤ 2k

− 1 (assuming that G is connected).
Let r be the required number of colors. Set t = ⌊

n
r ⌋. Any equitable coloring of G contains a = n − rt color classes of

cardinality t + 1 and b = r − a color classes of cardinality t . We distinguish two cases:
If r ≤ k, then for each proper coloring V1, . . . , Vr of W we construct a system of linear integer inequalities with sr

variables xi,j, i ∈ {1, . . . , s} and j ∈ {1, . . . , r}, where xi,j will express the number of vertices of color j in the set Ii:
xi,j ≥ 0,
xi,j = 0, if color j is used in N(Ii),
x1,j + · · · + xs,j = t + 1 − |W ∩ Vj|, if j ∈ {1, . . . , a},
x1,j + · · · + xs,j = t − |W ∩ Vj|, if j ∈ {a + 1, . . . , r},
xi,1 + · · · + xi,r = |Ii| for every i ∈ {1, . . . , s}.

It can be easily seen that this problem has an integer solution if and only if there is an equitable coloring of Gwhich extends
the starting coloring ofW . SinceW has at most kk colorings and the number of variables is at most k(2k

− 1), the Equitable
Coloring problem can be solved in F PT -time.

J. Fiala et al. / Theoretical Computer Science 412 (2011) 2513–2523 2517

Fig. 1. Construction of a chain of graphs F .

If r > k thenwe impose the following assumptions on the desired equitable coloring: Vertices ofW are colored by colors
{1, . . . , k} and there exists an integer l between max{0, k − b} and min{k, a} such that the color classes V1, . . . , Vl contain
t + 1 vertices and the color classes Vl+1, . . . , Vk only t vertices.

By permuting the names of colors, every equitable coloring of G gives rise to a coloring satisfying the above conditions.
On the other hand, if a partial coloring of Gwith k colors exists, such that all vertices ofW are colored and the conditions are
satisfied, then it can be extended to an equitable coloring of G: Any color from the set {k+1, . . . , r} can be used for coloring
of an arbitrary vertex of I .

Hencewe consider each possible coloring ofW by colors 1, . . . , k, and for every l such thatmax{0, k−b} ≤ l ≤ min{k, a},
we construct a system of linear integer inequalities with sk variables xi,j, i ∈ {1, . . . , s} and j ∈ {1, . . . , k}, where xi,j will
express the number of vertices of color j in the set Ii:

xi,j ≥ 0,
xi,j = 0, if color j used in N(Ii),
x1,j + · · · + xs,j = t + 1 − |W ∩ Vj|, if j ∈ {1, . . . , l},
x1,j + · · · + xs,j = t − |W ∩ Vj|, if j ∈ {l + 1, . . . , k},
xi,1 + · · · + xi,k ≤ |Ii| for every i ∈ {1, . . . , s}.

Since there are at most kk colorings of W , and the number of variables is bounded by k(2k
− 1), we again conclude that

the problem is solvable in F PT time. �

4. Complexity of the L(p, 1)-Labeling problems

4.1. Parametrization by treewidth

In this section we consider the L(p, 1)-Labeling problems for p = 0, 1. It was proved in [17] that the L(2, 1)-Labeling
problem is N P -complete even for graphs of treewidth two (and this result can be extended for any fixed p ≥ 2). On the
other hand, it was shown in [29] that the L(1, 1)-Labeling problem can be solved by a dynamic programming algorithm in
time O(∆28(t+1)+1

· n) + O(n3), for n-vertex graphs of treewidth at most t with maximum degree ∆, and the same holds for
L(0, 1)-Labeling. We show here that it is impossible to solve these problems in F PT -time unless F PT = W[1].

Theorem 5. The L(0, 1)-Labeling and L(1, 1)-Labeling problems are W[1]-hard when parameterized by the treewidth.

Proof. As a sample of a hardness proof, we show the result for L(1, 1)-Labeling, the proof for L(0, 1)-Labeling is analogous.
For positive integers l and λ such that l ≤ λ − 1, we first construct an auxiliary graph F = F(l, λ) on the vertex

set V (F) = {a1, . . . , al, b1, . . . , bl, c1, . . . , cλ−l−1, f , g}. Vertices f and g are adjacent and together dominate all the other
vertices: f is adjacent to all ai’s and all cj’s, and g is adjacent to all bi’s and all cj’s. No other edges are present.

As the vertex f is of degree λ, all labels {0, . . . , λ} need to be used in any L(1, 1)-labeling of f together with its neighbors.
The same argument holds also for each g .

We form a chain of graphs F(l, λ) by merging every bi with the corresponding ai of the consequent copy (see Fig. 1). The
following fact follows easily by the induction on the length of a chain:

Observation 6. For any L(1, 1)-labeling of a chain of graphs F(l, λ) of the span λ, the labels used on a1, . . . , al are distinct. These
labels are identical with the set of labels used on b1, . . . , bl of the last graph F(l, λ) in the chain. Also any labeling of a1, . . . , al
by different labels from the set {0, . . . , λ} can be extended to an L(1, 1)-labeling of the whole chain of span λ.

We reduce from the Equitable Coloring problem. It was proved in [16] that it is W[1]-hard when parameterized both
by the treewidth and r . Let G be a graph on n vertices u1, . . . , un withm edges, for which an equitable coloring by r colors is
questioned. Assume without loss of generality that r divides n, and let l = n

r . Define λ = n + m + 1.
Let ({Xi | i ∈ V (T)}, T) be a tree decomposition of G. We assume that T has maximum degree three, node 1 is a leaf,

|X1| = 1, and that for any two adjacent nodes i and j of T , |Xi \ Xj| + |Xj \ Xi| ≤ 1 (this may only increase the size of T
linearly).

Choose a walk P = 1 . . . s in T that visits every node of T at least once and at most three times. Let e1, . . . , em be the
edges of G reordered in the order as they first occur in the bags X1, . . . , Xs.

Now we take r disjoint chains of graphs F(l, λ) of lengthm. We denote the set of vertices {a1, . . . , al} of the first copy of
F in the i-th chain by Ai. The set {b1, . . . , bl} of the j-th copy of F in the i-th chain will be denoted by Bi,j and in an analogous
manner we use symbols Ci,j, fi,j, and gi,j.

2518 J. Fiala et al. / Theoretical Computer Science 412 (2011) 2513–2523

Fig. 2. Construction of H .

We proceed by adding a copy of F(n, λ). We distinguish vertices a1, . . . , an of this copy by renaming them to v1, . . . , vn.
Vertices b1, . . . , bn are merged in a one-to-one manner to the vertices of the union A1 ∪ . . . ∪ Ar . In an analogous way we
use notation f0, g0 and C0 for the remaining vertices in F(n, λ).

For each edge ej = upuq in the graph G, we introduce a new vertexwj. Wemakewj adjacent to vertices vp, vq, and to l−1
vertices of each set Bi,j with i ∈ {1, . . . , r} (hence each wj is of degree 2 + (l − 1)r).

Denote the obtained graph by H (see Fig. 2). We argue for the correctness of the reduction in the following lemma.

Lemma 7. The graph G has an equitable coloring by r colors if and only if H has an L(1, 1)-labeling of span λ.

Proof. Suppose that G has an equitable coloring using r colors. Each color i used on Gwill correspond to labels αi,1, . . . , αi,l
in H . We further use m + 2 additional labels β1, . . . , βm and γ1, γ2. We obtain the desired L(1, 1)-labeling of H of span
n + m + 1 = λ as follows:

• The vertices of {vp: up is colored by color i} are labeled by different labels αi,1, . . . , αi,l.
• For i ∈ {1, . . . , r}, vertices of Ai are labeled by αi,1, . . . , αi,l.
• Each vertex wj is labeled by βj.
• If wj is adjacent to vp where vp has been labeled by some αi,y, we use the same label αi,y on the only non-neighbor of wj

in Bi,j.
• The labeling of all other vertices are deduced from Observation 6, in particular:

– labels of the sets Bi,j are completed arbitrarily to αi,1, . . . , αi,l,
– the vertices of Ci,j are labeled by αk,y with k ≠ i, and by βx, x = 1, 2, . . . ,m, and
– all vertices fi,j together with f0 are labeled by γ1 and the vertex g0 together with all gi,j are labeled by γ2.

If a vertex wj is adjacent to vertices vp and vq, it means that the corresponding vertices up and uq are adjacent in G
(they form the edge ej), the labels αi,j of vp and vq differ in the subscript i. Hence it suffices that wj has one non-neighbor in
each set Bi,j for the labeling to be well defined. It is a routine check that we have constructed a correct L(1, 1)-labeling of H .

Assume now that H has an L(1, 1)-labeling of the span λ. The vertices of the sets Ai must be labeled by different labels,
and the same labels are used for labeling the vertices v1, . . . , vn by Observation 6. As above we denote the labels used for
vertices of each set Ai by αi,1, . . . , αi,l.

Now,we color a vertex up ofG by color i if the corresponding vp is labeled inH by someαi,y. Observe that each color is used
exactly on l vertices, and thus forms an equitable coloring. Assume for a contradiction that for some edge ej = upuq ∈ E(G),
the vertices up and uq are colored by the same color i. It means that the vertices vp and vq are labeled by some labels αi,x
and αi,y. By Observation 6 the vertices of Bi,j are labeled by αi,1, . . . , αi,l. By the construction of H , the vertex wj has l − 1
neighbors in Bi,j. Hence at least one of them has the same label as vp or as vq, a contradiction. �

To conclude the proof of the theorem, it is necessary to prove that H has a bounded treewidth.

Lemma 8. The treewidth of the graph H is at most (2r + 2)tw(G) + 3r + 2.

Proof. We construct a tree decomposition of H from the tree decomposition ({Xi | i ∈ V (T)}, T) of G of width t . For the
same tree T , we introduce sets Yi by first putting vj to Yi if and only if uj ∈ Xi for j = 1, . . . , n, and then adding f0, g0 to each
Yi. Then we alter the tree by adding some leaves and obtain the decomposition of H by adding further vertices to the bags.

The changes are performed inductively by following the walk P = 1 . . . s. Since |X1| = 1, this bag contains no edge of G.
Let Y1 := Y1 ∪ {f1,1, . . . , fr,1}. For each vertex z ∈ C0 ∪

r
i=1 Ai, a new leaf node dz adjacent to 1 is added in T . We define the

corresponding bag as Ydz := NH [z] (it contains 3 vertices).
For the induction we use an auxiliary variable h, initialized by h := 1.
Suppose that we have already made modifications of the tree decomposition for a subwalk 1 . . . ij−1 of P . Recall that the

edges of G are listed the order in which they occur in the bags X1, . . . , Xs. Let Ej = {ex, . . . , ey} be the set of edges that first
occur in Xij .

If Ej = ∅ then we set Yij := Yij ∪ {fh,1, . . . , fh,r} (if h > m this set is assumed to be empty), and consider the next node of
the walk.

J. Fiala et al. / Theoretical Computer Science 412 (2011) 2513–2523 2519

Suppose that Ej ≠ ∅. Then we set

Yij := Yij ∪ {wx, . . . , wy} ∪

y
p=x

({fp,1, . . . , fp,r} ∪ {gp,1, . . . , gp,r}) ∪ {fy+1,1, . . . , fy+1,r}

(if y = m then the last set is empty). Since |Xij \ Xij−1 | ≤ 1, Ej contains at most t edges, and we added at most t(2r + 1) + r
vertices. For each vertex z ∈

r
q=1

y
p=x(Bq,p ∪ Cq,p), a leaf node dz is added to the tree and joined to ij, and gets associated

with the bag Ydz := NH [z] (note that |Ydz | ≤ 4). Finally we set h := y + 1.
It is easy to check that we constructed a valid tree decomposition of H . The walk P visits any vertex at most three times.

When it visits a node i the first time, we add atmost t(2r+1)+r vertices to the initial set Yi, andwhen thewalk goes to i the
secondor the third time then atmost r vertices are added. Therefore, each bag Yi contains atmost t+1+2+t(2r+1)+r+r+r
vertices, and tw(H) ≤ (2r + 2)t + 3r + 2. �

Recall that Equitable Coloring is W[1]-hard when parameterized both by the treewidth and r . So Lemma 8 completes
the proof of the theorem for the case of L(1, 1)-labeling.

The argument for L(0, 1)-labeling is almost the same. The only difference is that in the definition of F(l, λ), the edge fg is
missing while both f and g are adjacent to one additional common neighbor cλ+1−l. �

4.2. Parametrization by vertex cover

In the case of L(p, 1)-Labeling problems, the decrease in complexity is most visible (note that for p > 1 even from
NP-hardness to FPT):

Theorem 9. For every p, the L(p, 1)-Labeling problem is F PT when parameterized by the vertex cover number.

Proof. As in the case of the Equitable Coloring problem we use reductions to systems of integer linear inequalities. The
cases of p = 0, 1 are considerably simpler than the case p > 1, since we have to be careful about the linear ordering of the
label space in the latter case.

We first consider the case of p = 1. Assume thatW is a vertex cover of size k and I =
s

i=1 Ii is the partition of V (G) \W
according to neighborhoods as in the proof of Theorem 4. Note that in any valid L(1, 1)-labeling, the vertices of Ii have to be
labeled by different labels.

If λ < k then an L(1, 1)-labeling of G exists only if |Ii| ≤ k. In this case, n ≤ k2k and the L(1, 1)-Labeling problem can be
decided in time O(kk2

k
).

Hence, it remains to consider the case of λ ≥ k. Let {X0, X1, . . . , Xt} be the collection of all possible set systems on
{I1, . . . , Is} such that wheneverIj and Ij′ are distinct elements of a system Xi then N(Ij) ∩ N(Ij′) = ∅. In particular we assume
that X0 = ∅.

Any L(1, 1)-labeling of G of span λ determines a partition of the set {0, . . . , λ} into sets L0, . . . , Lt as follows: For each
i = 1, . . . , t the labels in Li are exactly those labels that are used once on a single vertex of every Ij ∈ Xi and on no other
vertices of I . Consequently, L0 is the set of labels that are not used on I . Note that some sets Li may be empty.

We try all partial L(1, 1) labelings of G[W] of span at most k − 1 (by permuting the labels if necessary we may assume
that only labels 0, 1, . . . , k − 1 are used on W). There are at most kk such labelings. For each of them we further try the at
most tk placements of the labels 0, . . . , k − 1 into the sets L1, . . . , Lt . (If a label r is placed in some Li then r should not be
used as a label for a neighbor of elements of Xi nor for another vertex adjacent to such a neighbor.) The total number of such
nonisomorphic partial labelings is bounded by (tk)k.

For a fixed partial labeling let ai be the number of labels placed in Li. We decide whether this partial labeling can be
extended to the entire graph G by deciding the feasibility of the following system of linear integer inequalities with t + 1
variables x0, . . . , xt :

x0 + · · · + xt ≤ λ + 1,
xi ≥ ai, for i ∈ {0, . . . , t},−

i:Ij∈Xi

xi = |Ij|, for j ∈ {1, . . . , s}.

Similarly to the proof of Theorem 4, each variable xi denotes the number of labels in Li in the desired labeling. The
correspondence between a solution of the system and a valid L(1, 1)-labeling is straightforward: A partial labeling of W
(given together with placements of the labels used into the sets Li) can easily extended to a valid L(1, 1)-labeling by adding
new extra xi − ai labels and using them (arbitrarily) on the so far unlabeled vertices of Xi, one vertex in each Ij ∈ Xi.

By the above discussion and according to Theorem 3, the total running time of this process is

O(kn + (tk)k((s + t + 2)2.5(s+t+2)+o(s+t+2)(s + t + 2)(t + 1 + log n))) = O(kn + 222
k+1

log n).

The first summand stands for the partition of I into sets Ij. The next term stands for at most (tk)k partial labelings. The last
term corresponds to the procedure of deciding feasibility of a systemof s+t+2 inequalitieswith t+1 variables— thematrix

2520 J. Fiala et al. / Theoretical Computer Science 412 (2011) 2513–2523

is 0/1 valued and the entries on the right hand side are bounded by n, thus each requiring O(log n) bits. This completes the
proof for the case p = 1.

For the case of p = 0 we need only minor modifications. We try all at most kk feasible labelings of W , i.e. labelings
where vertices at distance two are labeled by different labels. For each such partial labeling, we consider all at most (t + 1)k
placements of 0, . . . , k − 1 in sets L0, . . . , Lt satisfying the condition that if a label r is placed in Li then r is not used as a
label of a vertex adjacent to a neighbor of an element in Xi.

For p > 1, we use the same approach but must be a little more careful, since it is necessary to take into account the
ordering of the labels. We use the same notationW , k, I, {I1, . . . , Is}, {X0, . . . , Xt} as in the previous cases.

If λ < 2pk then the existence of an L(p, 1)-labeling of G of span λ can be decided by brute-force enumeration in constant
time: In any valid L(p, 1)-labeling, the labels used on the vertices of each Ii are all different, and thus G may have at most
k + 2psk vertices.

Assume that λ ≥ 2pk. We claim that any L(p, 1)-labeling of G can be transformed into a labeling of the same span λ with
the additional property that the labels ofW are in the set {0, . . . , p(2k − 1)} ∪ {λ − p(2k − 1), . . . , λ}.

To prove this claim, consider a situation when two labels a, b ∈ {0, . . . , λ} are such that their difference with all labels
used on W is at least p. If a < b then we can permute labels of G by replacing a → a + 1 → · · · → b → a to obtain a
valid L(p, 1)-labeling of G: The 2p− 1 labels that differed by at most p from the label of a vertex ofW were either all shifted
or they all stayed in their places, so no labeling constraint along an edge with at least one endpoint in W got violated. And
any permutation of labels keeps the labels of vertices with a common neighbor distinct. Using such relabelings (and the
symmetric ones), one can ‘‘sweep’’ the labels of W towards the ends of the interval {0, . . . , λ} so that the difference of any
two consecutive ones (in each of the two groups) is at most 2p.

Similarly as in the proof for p = 1we try all partial L(p, 1)-labelings of G[W] using labels {0, . . . , 2pk}∪{λ−2pk, . . . , λ}

such that the difference between labels of W and 2pk or λ − 2pk is at least p − 1, and all distributions of the labels
{0, . . . , 2pk} ∪ {λ − 2pk, . . . , λ} into the classes Li. The completion of each partial labeling to the entire graph G is achieved
with labels from the set {r + 1, . . . , λ − r − 1}. The existence of such an extension is decided with the help of a system of
integer inequalities analogous to that in the case p = 1. Note that the labels of yet unlabeled vertices are at least p apart
from their neighbors inW due to the assumptions posed on the partial labelings. The overall time complexity of this method

is again O(kn + 222
k+1

log n). �

5. Labeling as coloring of the distance power

We have already mentioned that the special case of L(p, q)-Labeling for p = q = 1 coincides with the coloring of the
second distance power of the input graph. As such, it has attracted the attention of many graph theorists, and we also want
to reserve some extra space to refining our results from the previous section. In particular, we will pay closer attention to
the List and Prelabeling variants of the problem. We prefer to stay in the labeling setting because the FPT result holds for
general p. The hardness results are new and interesting just for p = 1, since it was known that the List L(p, 1)-Labeling and
L(p, 1)-Prelabeling Extension problems for p ≥ 2 are N P -complete for graphs of treewidth two [22,17]. We thus obtain
a complete characterization of the computational complexity for all values of p.

Theorem 10. The List L(1, 1)-Labeling problem is N P -complete for graphs of treewidth at most two, as well as for graphs of
vertex cover number at most four, even if all lists have at most three elements.

Proof. We reduce the 3-Satisfiability problem:

Instance: A Boolean formula φ in conjunctive normal form.
Question: Does φ have a satisfying truth assignment?

This problem is known to be N P -complete even when restricted to formulas where each clause contains two or three
literals and every variable occurs in exactly three clauses — once positive and twice negated [21].

Let x1, . . . , xn be Boolean variables, and let C1, . . . , Cm be the clauses of φ. We start our construction with four vertices
a0, . . . , a3 with lists of labels L(ai) := {i}, for i = 0, . . . , 3.

For each i ∈ {1, . . . , n}, we introduce vertices yi, ui, vi, wi, si, where yi is adjacent to a0 and a1, ui is adjacent to a0, vi is
adjacent to a1, wi is adjacent to a0 and a2, and finally si is adjacent to a1 and a3.

We define lists of labels of these vertices as follows: L(yi) := {4i, 4i+3}, L(ui) := {4i+1, 4i+3}, L(vi) := {4i+2, 4i+3},
L(wi) := {4i, 4i + 1} and L(si) := {4i, 4i + 2}.

For each j ∈ {1, . . . ,m}, the vertex cj is added, and for every literal l in the clause Cj one integer is included to L(cj): if
l = xi then 4i is included, if t = xi then 4i+ 1 is included if it is the first occurrence of this literal in φ, and 4i+ 2 is included
for the second occurrence.

Denote the obtained graph by G (see Fig. 3). Clearly, tw(G) = 2 and vc(G) = 4. We claim that φ can be satisfied if and
only if G has a list L(1, 1)-labeling.

Suppose that variables x1, . . . , xn have values for which the formula φ is satisfied. If xi = true then the vertices
yi, ui, vi, wi and si are labeled by 4i, 4i + 3, 4i + 3, 4i + 1 and 4i + 2. If xi = false then we use for these five vertices
labels 4i + 3, 4i + 1, 4i + 2, 4i and 4i.

J. Fiala et al. / Theoretical Computer Science 412 (2011) 2513–2523 2521

Fig. 3. Construction of G.

Every clause Cj contains positively valued literal l. If l is a variable xi then the vertex cj gets label 4i. Otherwise, i.e. when
l = xi, then cj is labeled either by 4i + 1, if it is the first occurrence of l in φ, or by 4i + 2 for the second occurrence.

Vertices ai are labeled by the unique possible labels. It is straightforward to verify that we get a valid list L(1, 1)-labeling
of G.

Assume now that G allows a list L(1, 1)-labeling. If yi is labeled by 4i then the variable xi is set to the value true, and if yi
is labeled by 4i + 3 then xi := false.

Suppose that cj is labeled by 4i for some i (i.e. the clause Cj contains literal xi). Therefore wi is labeled by 4i + 1, ui is
labeled by 4i + 3 and yi is labeled by 4i. It means that xi = true and the clause Cj is satisfied.

If cj is labeled by 4i+1 (i.e. the clause Cj contains literal xi as its first occurrence in φ) thenwi is labeled by 4i, yi is labeled
by 4i + 3.

Finally, if cj is labeled by 4i + 2 (i.e. Cj contains the second occurrence of xi) then si is labeled by 4i, and yi is labeled by
4i + 3 as well.

In the last two cases we get that xi = false, hence Cj is satisfied. �

It is easy to obtain the same result for the L(1, 1)-Prelabeling Extension problem for graphs of bounded treewidth:
Theorem 11. The L(1, 1)-Prelabeling Extension problem is N P -complete for graphs of treewidth at most two.
Proof. We reduce the List L(1, 1)-Labeling problem for graphs of treewidth two. Let G be a graph with lists of labels L(v).
Let λ = max


v∈V (G) L(v) + 1. For each vertex v ∈ V (G), we construct a star K1,λ−|L(v)|. The central vertex of this star is

prelabeled by λ, and the leaves are prelabeled by labels from {0, . . . , λ−1} \ L(v). Then the central vertex is joined with the
vertex v by an edge. The vertex v remains unlabeled. Denote the obtained graph byH . Obviously, G has a list L(1, 1)-labeling
if and only if the prelabeling of G can be extended to an L(1, 1)-labeling of span λ. �

Somewhat surprisingly, the complexity of L(1, 1)-Prelabeling Extension differs when parameterized by treewidth or
vertex cover number. While the L(1, 1)-Prelabeling Extension problem is difficult for graphs of bounded treewidth, it
becomes tractable when parameterized by the vertex cover number, even for general p.
Theorem 12. For every p, the L(p, 1)-Prelabeling Extension problem is in the class F PT when parameterized by the vertex
cover number.
Proof. We follow an analogous approach as in the proof of Theorem 9 and use the same notation of W , k, I, {I1, . . . , Is},
{X0, . . . , Xt}.

As in the proof of Theorem 9, we explore all extensions of the given prelabeling to the setW and also to some vertices of
I . The newly labeled vertices of I may be labeled only by labels that are used onW .

In the given partial labeling, let bi, for 0 ≤ i ≤ t be the number of distinct labels that are used exclusively on elements
of Xi. In particular, b0 is the difference between λ + 1 and the number of labels of the partial labeling. Furthermore, let ai be
the number of distinct labels used on Xi (as bi is defined) but this time restricted only to the set of labels used onW .

We decide whether the partial labeling can be extended to the entire graph G by a system of linear inequalities on
variables indexed by two indices. A variable xi,i′ is present if i, i′ ∈ {0, . . . , t} and Xi′ ⊆ Xi. The value of xi,i′ stands for
the number of distinct labels that are used on Xi′ and that will be used to label vertices of the system Xi (at one vertex from
each set Ij ∈ Xi, of course).

−
i:Xi′⊆Xi

xi,i′ = bi′ , for i′ ∈ {0, . . . , t},−
i′:Xi′⊆Xi

xi,i′ ≥ ai, for i ∈ {0, . . . , t},

−
i:Ij∈Xi

−
i′:Xi′⊆Xi

xi,i′ = |Ij|, for j ∈ {1, . . . , s}.

The first set of equalities expresses the fact that the numbers of labels that are used on extensions of a system Xi′ sums up
to bi′ . This set of equations also captures the property that the whole span does not exceed λ.

The second and third sets of (in-)equalities correspond directly to those of Theorem 9, the only difference is that the final
number of labels used for Xi is obtained as the sum of all extensions over partial labelings defined on Xi′ ⊆ Xi.

The number of variables is bounded by O(t2), the number of inequalities by 2 + 2t + s so the overall time complexity is

O(kn + 222
2k+1

log n). �

2522 J. Fiala et al. / Theoretical Computer Science 412 (2011) 2513–2523

6. Complexity of the Channel Assignment problem

Recall that for the Channel Assignment problem, the span of the assignment – as a part of the input – is measured in
binary encoding. Since Channel Assignment is known to be NP-complete for graphs of treewidth 3, the following theorem
proves a drop in complexity under parametrization by the vertex cover number. However, it does not settle its FPT status,
and we thus leave this question as an open problem.

Theorem 13. For every k, the Channel Assignment problem is solvable in polynomial time for graphs of vertex cover number
bounded by k.

Proof. We will actually show that the minimum span of a feasible labeling can be computed in polynomial time, if the
input graph has bounded vertex cover number. Towards this end suppose that G comes equipped with a weight function
w : E(G) −→ Z+ with all weights at most wmax. Let V (G) = W ∪ I be a partition into a vertex cover W of size k and an
independent set I . Our approach is based on the following minimality argument:

Lemma 14. If G, w allows a channel assignment of span λ, then in every assignment f : V (G) −→ {0, 1, . . . , λ} that minimizes
the sum

∑
x∈V (G) f (x), every vertex u ∈ W fulfills one of the following conditions:

1. f (u) = 0, or
2. there is an x ∈ I such that f (x) = 0, xu ∈ E(G) and f (u) = w(xu), or
3. there is a v ∈ W such that uv ∈ E(G) and f (u) = f (v) + w(uv), or
4. there are x ∈ I , v ∈ W, such that vx, xu ∈ E(G) and f (x) = f (v) + w(vx) and f (u) = f (x) + w(xu).

Note that because of the nonnegativity of w, it is always f (x) ≤ f (u), or f (v) ≤ f (u), or f (v) ≤ f (x) ≤ f (u) in the above
listed cases.

Proof. If there exists any channel assignment of span λ, consider such a one that minimizes the sum−
x∈V (G)

f (x).

Clearly, minx∈V (G) f (x) = 0 and none of the labels can be decreased by 1. That means that for every u ∈ V (G) such that
f (u) > 0, there is a y ∈ N(u) such that f (y) = f (u)−w(uy). The claim above then follows as a case analysis whether y ∈ W
or y ∈ I for a particular u ∈ W . �

Suppose G, w allows a channel assignment of span λ, and consider a (hypothetical) assignment f : V (G) −→ {0, 1,
. . . , λ} that minimizes the sum

∑
x∈V (G) f (x). Construct an auxiliary directed graphGwith vertex setW ∪ X for some X ⊂ I

as follows: For every u ∈ W , follow one of the following rules (if more than one are applicable, choose an arbitrary one)

1. if there is an x ∈ I such that f (x) = 0, xu ∈ E(G) and f (u) = w(xu), then add one such x to X and the arc ux to E(G),
2. if there is a v ∈ W such that uv ∈ E(G) and f (u) = f (v) + w(uv), then add one such arc uv to E(G),
3. if there are x ∈ I , v ∈ W , such that vx, xu ∈ E(G) and f (x) = f (v) + w(vx) and f (u) = f (x) + w(xu), then add one such

vertex x to X , and the arcs ux, xv to E(G).

This auxiliary graph is a directed forest, all sinks are labeled 0, and all other vertices have outdegree 1 (if some u ∈ W
had outdegree 0, then reassigning f ′(u) = f (u) − 1 would yield a valid assignment with a smaller sum of labels). Let us
call such a directed graph a scenario. Since each vertex ofW which is not a sink can be adjacent to n − k sinks from I or can
be adjacent to at most k − 1 vertices of W or can be connected by directed paths of length two to a vertex in W in at most
(n − k)(k − 1) ways, the number of possible scenarios is at most (k(n − k + 1))k = O(kknk).

For each scenario, we check if it extends to a valid channel assignment and what would be the minimum span of such
an extension. For a particular scenario with vertex set W ∪ X , the labels of the vertices W ∪ X are uniquely determined
by the scenario. We first check all O(k2) edges between the vertices of W ∪ X , and then we attend to the vertices of I \ X .
Let u1, u2, . . . , uk be an ordering of W determined by the scenario such that f (u1) ≤ f (u2) ≤ · · · ≤ f (uk). For each vertex
z ∈ I \ X , we check whether it fits in some interval [f (ui)..f (ui+1)]. This can be done in time linear in (logwmax + log n)k
by checking if maxj≤i(f (uj) + w(ujz)) ≤ minj≥i+1(f (uj) − w(ujz)). If none of these intervals is available for f (z), and
neither is the interval [0..f (u1)], we have to label z by f (z) = min1≤j≤k(f (uj) + w(ujz)). Finally we compute the maximum
of all labels used to get the span. In this way we compute the minimum possible span of a channel assignment in time
O(kk+2nk+1(logwmax + log n)). �

7. Concluding remarks

7.1 The fixed parameter complexity of the Channel Assignment problem when parameterized by vertex cover number is
not solved by the XP membership to a full satisfaction. Is the problem in FPT? Or W[1]-hard? We see this as the main open
problem in the area of parametrization of coloring and labeling problems by vertex cover.

J. Fiala et al. / Theoretical Computer Science 412 (2011) 2513–2523 2523

7.2 Several of our positive results can be generalized to graphs that can be split to small components by deleting a
bounded number of vertices. More formally, for a positive integer l let us define vcl(G) as the minimum size of a set
W of vertices such that every connected component of G \ W has at most l vertices. Hence for every graph G, we have
vc(G) = vc1(G) ≥ vc2(G) ≥ · · · and bounded vertex cover number implies bounded vcl for l ≥ 2 (but not vice versa). Note
also that for every graph G and every l, it holds tw(G) ≤ vcl(G) + l − 1, and hence bounded vcl implies bounded treewidth
(but not vice versa). Using similar arguments as in our proofs of Theorems 2 and 13, we can prove the following stronger
results.

Theorem 15. The Precoloring Extension problem is F PT for graphs G satisfying vcl(G) ≤ k when parameterized by k and l.

Theorem 16. For every k and l, the Channel Assignment problem is solvable in polynomial time for graphs G satisfying
vcl(G) ≤ k.

7.3 Our FPT algorithms might not attain the best possible time bounds, hence more efficient algorithms might be an
interesting subject for further research.

Acknowledgements

The authors thank Henning Fernau for useful discussions leading to considerations presented in the previous paragraph.
The second author was supported by the Norwegian Research Council.

References

[1] K. Aardal, R. Weismantel, L.A. Wolsey, Non-standard approaches to integer programming, Discrete Appl. Math. 123 (2002) 5–74.
[2] G. Agnarsson, M.M. Halldórsson, Coloring powers of planar graphs, SIAM J. Discrete Math. 16 (2003) 651–662.
[3] N. Alon, Restricted colorings of graphs, in: Surveys in Combinatorics (Keele), in: London Math. Soc. Lecture Note Ser., vol. 187, Cambridge University

Press, Cambridge, 1993, pp. 1–33.
[4] H.L. Bodlaender, Treewidth: Characterizations, applications, and computations, in: F.V. Fomin (Ed.), Graph-Theoretic Concepts in Computer Science,

Proceedings WG 2006, in: Lecture Notes in Computer Science, vol. 4271, Springer, 2006, pp. 1–14.
[5] H.L. Bodlaender, F.V. Fomin, Equitable colorings of bounded treewidth graphs, Theoret. Comput. Sci. 349 (2005) 22–30.
[6] H.L. Bodlaender, A.M.C.A. Koster, Combinatorial optimization on graphs of bounded treewidth, Comput. J. 51 (2008) 255–269.
[7] J.F. Buss, J. Goldsmith, Nondeterminism within P, SIAM J. Comput. 22 (1993) 560–572.
[8] T. Calamoneri, The l(h, k)-labelling problem: a survey and annotated bibliography, Comput. J. 49 (2006) 585–608.
[9] G.J. Chang, D. Kuo, The L(2, 1)-labeling problem on graphs, SIAM J. Discrete Math. 9 (1996) 309–316.

[10] M. Dom, D. Lokshtanov, S. Saurabh, Y. Villanger, Capacitated domination and covering: A parameterized perspective, in: M. Grohe, R. Niedermeier
(Eds.), Parameterized and Exact Computation, Proceedings of IWPEC 2008, in: Lecture Notes in Computer Science, vol. 5018, Springer, 2008, pp. 78–90.

[11] R.G. Downey, M.R. Fellows, Parameterized complexity, in: Monographs in Computer Science, Springer-Verlag, New York, 1999.
[12] R.G. Downey, M.R. Fellows, Fixed-parameter tractability and completeness. II. On completeness forW [1], Theoret. Comput. Sci. 141 (1995) 109–131.
[13] Z. Dvořák, D. Král, P. Nejedlý, R. Škrekovski, Coloring squares of planar graphs with girth six, European J. Combin. 29 (2008) 838–849.
[14] Z. Dvořák, R. Škrekovski, M. Tancer, List-coloring squares of sparse subcubic graphs, SIAM J. Discrete Math. 22 (2008) 139–159.
[15] M. Fellows, D. Lokshtanov, N. Misra, F.A. Rosamond, S. Saurabh, Graph layout problems parameterized by vertex cover, in: S.-H. Hong, H. Nagamochi,

T. Fukunaga (Eds.), Algorithms and Computation, Proceedings of ISAAC 2008, in: Lecture Notes in Computer Science, vol. 5369, Springer, 2008,
pp. 294–305.

[16] M.R. Fellows, F.V. Fomin, D. Lokshtanov, F.A. Rosamond, S. Saurabh, S. Szeider, C. Thomassen, On the complexity of some colorful problems
parameterized by treewidth, in: A.W.M. Dress, Y. Xu, B. Zhu (Eds.), Combinatorial Optimization and Applications, Proceedings of COCOA 2007,
in: Lecture Notes in Computer Science, vol. 4616, Springer, 2007, pp. 366–377.

[17] J. Fiala, P.A. Golovach, J. Kratochvíl, Distance constrained labelings of graphs of bounded treewidth, in: L. Caires, G.F. Italiano, L.Monteiro, C. Palamidessi,
M. Yung (Eds.), Automata, Languages and Programming, Proceedings of ICALP 2005, in: Lecture Notes in Computer Science, vol. 3580, Springer, 2005,
pp. 360–372.

[18] J. Fiala, P.A. Golovach, J. Kratochvíl, Computational complexity of the distance constrained labeling problem for trees (extended abstract), in: L. Aceto,
I. Damgård, L.A. Goldberg, M.M. Halldórsson, A. Ingólfsdóttir, I. Walukiewicz (Eds.), Automata, Languages and Programming, Proceedings of ICALP
2008, in: Lecture Notes in Computer Science, vol. 5125, Springer, 2008, pp. 294–305.

[19] J. Fiala, P.A. Golovach, J. Kratochvíl, Parameterized complexity of coloring problems: treewidth versus vertex cover, in: J. Chen, S.B. Cooper (Eds.),
Theory and Applications of Models of Computation, Proceedings of TAMC 2009, in: Lecture Notes in Computer Science, vol. 5532, Springer, 2009,
pp. 221–230.

[20] A. Frank, É Tardos, An application of simultaneous Diophantine approximation in combinatorial optimization, Combinatorica 7 (1987) 49–65.
[21] M.R. Garey, D.S. Johnson, Computers and intractability, in: A Guide to the Theory of NP-completeness, in: A Series of Books in the Mathematical

Sciences, W. H. Freeman and Co, San Francisco, Calif, 1979.
[22] P.A. Golovach, Systems of pairs of q-distant representatives, and graph colorings, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 293

(2002) 5–25. 181.
[23] T. Hasunuma, T. Ishii, H. Ono, Y. Uno, A linear time algorithm for L(2, 1)-labeling of trees, in: A. Fiat, P. Sanders (Eds.), Algorithms — ESA 2009,

Proceedings of ESA 2009, in: Lecture Notes in Computer Science, vol. 5757, Springer, 2009, pp. 35–46.
[24] R. Kannan, Minkowski’s convex body theorem and integer programming, Math. Oper. Res. 12 (1987) 415–440.
[25] H.W. Lenstra Jr., Integer programming with a fixed number of variables, Math. Oper. Res. 8 (1983) 538–548.
[26] C. McDiarmid, B. Reed, Channel assignment on graphs of bounded treewidth, Discrete Math. 273 (2003) 183–192.
[27] Z. Tuza, Graph colorings with local constraints—a survey, Discuss. Math. Graph Theory 17 (1997) 161–228.
[28] R.K. Yeh, A survey on labeling graphs with a condition at distance two, Discrete Math. 306 (2006) 1217–1231.
[29] X. Zhou, Y. Kanari, T. Nishizeki, Generalized vertex-coloring of partial k-trees, IEICE Trans. Fundamentals Electron. Commun. Comput. Sci. E83-A (2000)

671–678.

	Parameterized complexity of coloring problems: Treewidth versus vertex cover
	Introduction
	Notation and basic definitions
	Complexity of coloring problems
	Complexity of the List Coloring and Precoloring Extension problems
	Complexity of the Equitable Coloring problem

	Complexity of the L(p,1)-Labeling problems
	Parametrization by treewidth
	Parametrization by vertex cover

	Labeling as coloring of the distance power
	Complexity of the Channel Assignment problem
	Concluding remarks
	Acknowledgements
	References

