985 research outputs found

    Atomistic Simulations of P(NDI2OD-T2) Morphologies: From Single Chain to Condensed Phases

    No full text
    We investigate theoretically the structure, crystallinity, and solubility of a high-mobility n-type semiconducting copolymer, P(NDI2OD-T2), and we propose a set of new force field parameters. The force field is reparametrized against density functional theory (DFT) calculations, with the aim to reproduce the correct torsional angles that govern the polymer chain flexibility and morphology. We simulate P(NDI2OD-T2) oligomers in different environments, namely, in vacuo, in the bulk phase, and in liquid toluene and chloronaphthalene solution. The choice of these solvents is motivated by the fact that they induce different kinds of molecular preaggregates during the casting procedures, resulting in variable device performances. Our results are in good agreement with the available experimental data; the polymer bulk structure, in which the chains are quite planar, is correcly reproduced, yet the isolated chains are flexible enough to fold in vacuo. We also calculate the solubility of P(NDI2OD-T2) in toluene and chloronaphthalene, predicting a much better solubility of the polymer in the latter, also in accordance to experimental observations. Different morphologies and dynamics of the oligomers in the two solvents have been observed. The proposed parameters make it possible to obtain the description of P(NDI2OD-T2) in different environments and can serve as a basis for extensive studies of this polymer semiconductor, such as, for example, the dynamics of aggregation in solvent

    A telescope detection system for direct and high resolution spectrometry of intense neutron fields

    Get PDF
    A high energy- and spatial-resolution telescope detector was designed and constructed for neutron spectrometry of intense neutron fields. The detector is constituted by a plastic scintillator coupled to a monolithic silicon telescope (MST), in turn consisting of a DE and an E stage. The scintillator behaves as an “active” recoil-proton converter, since it measures the deposited energy of the recoil-protons generated across. The MST measures the residual energy of recoil-protons downstream of the converter and also discriminates recoil-protons from photons associated to the neutron field. The lay-out of the scintillator/MST system was optimized through an analytical model for selecting the angular range of the scattered protons. The use of unfolding techniques for reconstructing the neutron energy distribution was thus avoided with reasonable uncertainty (about 1.6% in neutron energy) and efficiency (of the order of 106 counts per unit neutron fluence). A semi-empirical procedure was also developed for correcting the non-linearity in light emission from the organic scintillator. The spectrometer was characterized with quasi-monoenergetic and continuous fields of neutrons generated at the CN Van De Graaff accelerator of the INFN-Legnaro National Laboratory, Italy, showing satisfactory agreement with literature data

    Low-frequency modes in the Raman spectrum of sp-sp2 nanostructured carbon

    Full text link
    A novel form of amorphous carbon with sp-sp2 hybridization has been recently produced by supersonic cluster beam deposition showing the presence in the film of both polyynic and cumulenic species [L. Ravagnan et al. Phys. Rev. Lett. 98, 216103 (2007)]. Here we present a in situ Raman characterization of the low frequency vibrational region (400-800 cm-1) of sp-sp2 films at different temperatures. We report the presence of two peaks at 450 cm-1 and 720 cm-1. The lower frequency peak shows an evolution with the variation of the sp content and it can be attributed, with the support of density functional theory (DFT) simulations, to bending modes of sp linear structures. The peak at 720 cm-1 does not vary with the sp content and it can be attributed to a feature in the vibrational density of states activated by the disorder of the sp2 phase.Comment: 15 pages, 5 figures, 1 tabl

    Mapping Orientational Order of Charge-Probed Domains in a Semiconducting Polymer

    No full text
    Structure–property relationships are of fundamental importance to develop quantitative models describing charge transport in organic semiconductor based electronic devices, which are among the best candidates for future portable and lightweight electronic applications. While microstructural investigations, such as those based on X-rays, electron microscopy, or polarized optical probes, provide necessary information for the rationalization of transport in macromolecular solids, a general model predicting how charge accommodates within structural maps is not yet available. Therefore, techniques capable of directly monitoring how charge is distributed when injected into a polymer film and how it correlates to structural domains can help fill this gap. Supported by density functional theory calculations, here we show that polarized charge modulation microscopy (p-CMM) can unambiguously and selectively map the orientational order of the only conjugated segments that are probed by mobile charge in the few nanometer thick accumulation layer of a high-mobility polymer-based field-effect transistor . Depending on the specific solvent-induced microstructure within the accumulation layer, we show that p-CMM can image charge-probed domains that extend from submicrometer to tens of micrometers size, with markedly different degrees of alignment. Wider and more ordered p-CMM domains are associated with improved carrier mobility, as extracted from device characteristics. This observation evidences the unprecedented opportunity to correlate, directly in a working device, electronic properties with structural information on those conjugated segments involved in charge transport at the buried semiconductor–dielectric interface of a field-effect device

    Light Ion Accelerating Line (L3IA): Test Experiment at ILIL-PW

    Full text link
    The construction of a novel Laser driven Light Ions Acceleration Line(L3IA) is progressing rapidly towards the operation, following the recent upgrade of the ILIL-PW laser facility. The Line was designed following the pilot experimental activity carried out earlier at the same facility to define design parameters and to identify main components including target control and diagnostic equipment, also in combination with the numerical simulations for the optimization of laser and target parameters. A preliminary set of data was acquired following the successful commissioning of the laser system >100 TW upgrade. Data include output from a range of different ion detectors and optical diagnostics installed for qualification of the laser-target interaction. An overview of the results is given along with a description of the relevant upgraded laser facility and features.Comment: 6 pages, 7 figures, 18 references, presented at the EAAC 201

    π-Conjugation and End Group Effects in Long Cumulenes: Raman Spectroscopy and DFT Calculations

    Get PDF
    We have investigated the structure and spectroscopic properties of cumulenic carbon chains, focusing on the peculiar π-conjugation properties and end-group effects that influence their behavior. With support from Density Functional Theory (DFT) calculations, we have analyzed the IR and Raman spectra of cumulenes characterized by different end-capping groups and we have related them to the bond length alternation (BLA) pattern and local spectroscopic parameters associated with the CC bonds along the sp-carbon chain. For cumulenes we observe a breakdown of the correlation existing in polyynes among frequencies, Raman intensities of the Ʀ line (longitudinal CC stretching modes), and BLA. While the low Ʀ line frequency and equalized CC bonds would indicate the “metallic” character of cumulenic species, we obtain an unusually strong Raman intensity, which is typical of bond-alternated (semiconductive) structures. DFT calculations reveal that this is a consequence of π-electron conjugation, which markedly extends from the sp-carbon chain to the aryl rings belonging to the end groups. These findings suggest the existence of a strong electronic, vibrational and structural coupling between sp-carbon chains and sp2-carbon species, which could play a key role in nanostructured sp/sp2-hybrid carbon materials (e.g., linear carbon chains coupled to graphene domains). Within this context, Raman spectroscopy is a valuable tool for the detailed characterization of the molecular properties of this kind of materials

    Inhibition of the de-myelinating properties of Aicardi-Goutières syndrome lymphocytes by cathepsin D silencing.

    Get PDF
    Molecular mechanisms relating interferon-alpha (IFN-alpha) to brain damage have recently been identified in a microarray analysis of cerebrospinal fluid lymphocytes from patients with Aicardi-Goutières Syndrome (AGS). These findings demonstrate that the inhibition of angiogenesis and the activation of neurotoxic lymphocytes are the major pathogenic mechanisms involved in the brain damage consequent to elevated interferon-alpha levels. Our previous study demonstrated that cathepsin D, a lysosomal aspartyl endopeptidase, is the primary mediator of the neurotoxicity exerted by AGS lymphocytes. Cathepsin D is a potent pro-apoptotic, neurotoxic, and demyelinating protease if it is not properly inhibited by the activities of leukocystatins. In central nervous system white matter, demyelination results from cathepsin over-expression when not balanced by the expression of its inhibitors. In the present study, we used RNA interference to inhibit cathepsin D expression in AGS lymphocytes with the aim of decreasing the neurotoxicity of these cells. Peripheral blood lymphocytes collected from an AGS patient were immortalized and co-cultured with astrocytes in the presence of interferon alpha with or without cathepsin D RNA interference probes. Cathepsin D expression was measured by qPCR, and neurotoxicity was evaluated by microscopy. RNA interference inhibited cathepsin D over-production by 2.6-fold (P<0.01) in AGS lymphocytes cultured in the presence of interferon alpha. AGS lymphocytes treated using RNA interference exhibited a decreased ability to induce neurotoxicity in astrocytes. Such neurotoxicity results in the inhibition of astrocyte growth and the inhibition of the ability of astrocytes to construct web-like aggregates. These results suggest a new strategy for repairing AGS lymphocytes in vitro by inhibiting their ability to induce astrocyte damage and leukodystroph

    Children with Cerebral Palsy can imagine actions like their normally developed peers

    Get PDF
    The present study aimed at assessing whether children with Cerebral Palsy (CP) can imagine object directed actions similarly to their normally developed peers. We asked children with CP (n = 12) and paired healthy controls (n = 12) to imagine in first person perspective eight daily actions, after observing them through videoclips presented on a computer screen. During motor imagery (MI) children were interrupted at a specific timepoint (e.g., at 2.5 s) from the start. Two frames extracted from the videoclips were then presented on the screen. One of the two depicted the correct timepoint at which the imagined action was interrupted, while the other represented an earlier or later timepoint. Children had to respond by pressing the key associated to the correct frame. Children also underwent VMIQ-2 questionnaire. Both groups performed similarly in the questionnaire and in the requested task, where they showed the same error rate. Errors mainly concerned the later frame, suggesting a similar strategy to solve the task in the two groups. The results support the view that children with CP can imagine actions similarly to their normally developed peers. This encourages the use of MI as a rehabilitative tool in children with motor impairment
    • …
    corecore