376 research outputs found
Analysis of the time to sustained progression in Multiple Sclerosis using generalised linear and additive models
The course of multiple sclerosis (MS) is generally difficult to predict. This is due to the great inter-individual variability with respect to symptoms and disability status. An important prognostic endpoint for MS is the expected time to sustained disease progression. Using the Expanded Disability Status Scale (EDSS) this endpoint is here defined as a rise of 1.0 or 0.5 compared to baseline EDSS (5.5) which is confirmed for at least six months. The goal of this paper was threefold. It aimed at identifying covariates which significantly influence sustained progression, determining size and form of the effect of these covariates and estimating the survival curves for given predictors. To this end a piecewise exponential model utilizing piecewise constant hazard rates and a Poisson model were devised. In order to improve and simplify these models a method for piecewise linear parameterization of non-parametric generalized additive models (GAMs) was applied. The models included fixed and random effects, the posterior distribution was estimated using Markov Chain Monte Carlo methods (MCMC) as well as a penalized likelihood approach and variables were selected using Akaikes information criterium (AIC). The models were applied to data of placebo patients from worldwide clinical trials that are pooled in the database of the Sylvia Lawry Centre for Multiple Sclerosis Research (SLCMSR). Only with a pure exponential model and fixed effects, baseline EDSS and the number of relapses in the last 12 month before study entry had an effect on the hazard rate. For the piecewise exponential model with random study effects there was no effect of covariates on the hazard rate other than a slightly decreasing effect of time. This reflects the fact that unstable patients reach the event early and are therefore eliminated from the analysis (selection effect)
Geo-additive modelling of malaria in Burundi
Abstract Background Malaria is a major public health issue in Burundi in terms of both morbidity and mortality, with around 2.5 million clinical cases and more than 15,000 deaths each year. It is still the single main cause of mortality in pregnant women and children below five years of age. Because of the severe health and economic burden of malaria, there is still a growing need for methods that will help to understand the influencing factors. Several studies/researches have been done on the subject yielding different results as which factors are most responsible for the increase in malaria transmission. This paper considers the modelling of the dependence of malaria cases on spatial determinants and climatic covariates including rainfall, temperature and humidity in Burundi. Methods The analysis carried out in this work exploits real monthly data collected in the area of Burundi over 12 years (1996-2007). Semi-parametric regression models are used. The spatial analysis is based on a geo-additive model using provinces as the geographic units of study. The spatial effect is split into structured (correlated) and unstructured (uncorrelated) components. Inference is fully Bayesian and uses Markov chain Monte Carlo techniques. The effects of the continuous covariates are modelled by cubic p-splines with 20 equidistant knots and second order random walk penalty. For the spatially correlated effect, Markov random field prior is chosen. The spatially uncorrelated effects are assumed to be i.i.d. Gaussian. The effects of climatic covariates and the effects of other spatial determinants are estimated simultaneously in a unified regression framework. Results The results obtained from the proposed model suggest that although malaria incidence in a given month is strongly positively associated with the minimum temperature of the previous months, regional patterns of malaria that are related to factors other than climatic variables have been identified, without being able to explain them. Conclusions In this paper, semiparametric models are used to model the effects of both climatic covariates and spatial effects on malaria distribution in Burundi. The results obtained from the proposed models suggest a strong positive association between malaria incidence in a given month and the minimum temperature of the previous month. From the spatial effects, important spatial patterns of malaria that are related to factors other than climatic variables are identified. Potential explanations (factors) could be related to socio-economic conditions, food shortage, limited access to health care service, precarious housing, promiscuity, poor hygienic conditions, limited access to drinking water, land use (rice paddies for example), displacement of the population (due to armed conflicts).</p
Geo-additive models of Childhood Undernutrition in three Sub-Saharan African Countries
We investigate the geographical and socioeconomic determinants of childhood undernutrition in Malawi, Tanzania and Zambia, three neighboring countries in Southern Africa using the 1992 Demographic and Health Surveys. We estimate models of undernutrition jointly for the three countries to explore regional patterns of undernutrition that transcend boundaries, while allowing for country-specific interactions. We use semiparametric models to flexibly model the effects of selected so-cioeconomic covariates and spatial effects. Our spatial analysis is based on a flexible geo-additive model using the district as the geographic unit of anal-ysis, which allows to separate smooth structured spatial effects from random effect. Inference is fully Bayesian and uses recent Markov chain Monte Carlo techniques. While the socioeconomic determinants generally confirm what is known in the literature, we find distinct residual spatial patterns that are not explained by the socioeconomic determinants. In particular, there appears to be a belt run-ning from Southern Tanzania to Northeastern Zambia which exhibits much worse undernutrition, even after controlling for socioeconomic effects. These effects do transcend borders between the countries, but to a varying degree. These findings have important implications for targeting policy as well as the search for left-out variables that might account for these residual spatial patterns
Optimization viewpoint on Kalman smoothing, with applications to robust and sparse estimation
In this paper, we present the optimization formulation of the Kalman
filtering and smoothing problems, and use this perspective to develop a variety
of extensions and applications. We first formulate classic Kalman smoothing as
a least squares problem, highlight special structure, and show that the classic
filtering and smoothing algorithms are equivalent to a particular algorithm for
solving this problem. Once this equivalence is established, we present
extensions of Kalman smoothing to systems with nonlinear process and
measurement models, systems with linear and nonlinear inequality constraints,
systems with outliers in the measurements or sudden changes in the state, and
systems where the sparsity of the state sequence must be accounted for. All
extensions preserve the computational efficiency of the classic algorithms, and
most of the extensions are illustrated with numerical examples, which are part
of an open source Kalman smoothing Matlab/Octave package.Comment: 46 pages, 11 figure
Estimating Nuisance Parameters in Inverse Problems
Many inverse problems include nuisance parameters which, while not of direct
interest, are required to recover primary parameters. Structure present in
these problems allows efficient optimization strategies - a well known example
is variable projection, where nonlinear least squares problems which are linear
in some parameters can be very efficiently optimized. In this paper, we extend
the idea of projecting out a subset over the variables to a broad class of
maximum likelihood (ML) and maximum a posteriori likelihood (MAP) problems with
nuisance parameters, such as variance or degrees of freedom. As a result, we
are able to incorporate nuisance parameter estimation into large-scale
constrained and unconstrained inverse problem formulations. We apply the
approach to a variety of problems, including estimation of unknown variance
parameters in the Gaussian model, degree of freedom (d.o.f.) parameter
estimation in the context of robust inverse problems, automatic calibration,
and optimal experimental design. Using numerical examples, we demonstrate
improvement in recovery of primary parameters for several large- scale inverse
problems. The proposed approach is compatible with a wide variety of algorithms
and formulations, and its implementation requires only minor modifications to
existing algorithms.Comment: 16 pages, 5 figure
Bayesian modelling of the effect of climate on malaria in Burundi
<p>Abstract</p> <p>Background</p> <p>In Burundi, malaria is a major public health issue in terms of both morbidity and mortality with around 2.5 million clinical cases and more than 15,000 deaths each year. It is the single main cause of mortality in pregnant women and children below five years of age. Due to the severe health and economic cost of malaria, there is still a growing need for methods that will help to understand the influencing factors. Several studies have been done on the subject yielding different results as which factors are most responsible for the increase in malaria. The purpose of this study has been to undertake a spatial/longitudinal statistical analysis to identify important climatic variables that influence malaria incidences in Burundi.</p> <p>Methods</p> <p>This paper investigates the effects of climate on malaria in Burundi. For the period 1996-2007, real monthly data on both malaria epidemiology and climate in the area of Burundi are described and analysed. From this analysis, a mathematical model is derived and proposed to assess which variables significantly influence malaria incidences in Burundi. The proposed modelling is based on both generalized linear models (GLM) and generalized additive mixed models (GAMM). The modelling is fully Bayesian and inference is carried out by Markov Chain Monte Carlo (MCMC) techniques.</p> <p>Results</p> <p>The results obtained from the proposed models are discussed and it is found that malaria incidence in a given month in Burundi is strongly positively associated with the minimum temperature of the previous month. In contrast, it is found that rainfall and maximum temperature in a given month have a possible negative effect on malaria incidence of the same month.</p> <p>Conclusions</p> <p>This study has exploited available real monthly data on malaria and climate over 12 years in Burundi to derive and propose a regression modelling to assess climatic factors that are associated with monthly malaria incidence. The results obtained from the proposed models suggest a strong positive association between malaria incidence in a given month and the minimum temperature (night temperature) of the previous month. An open question is, therefore, how to cope with high temperatures at night.</p
Fast stable direct fitting and smoothness selection for Generalized Additive Models
Existing computationally efficient methods for penalized likelihood GAM
fitting employ iterative smoothness selection on working linear models (or
working mixed models). Such schemes fail to converge for a non-negligible
proportion of models, with failure being particularly frequent in the presence
of concurvity. If smoothness selection is performed by optimizing `whole model'
criteria these problems disappear, but until now attempts to do this have
employed finite difference based optimization schemes which are computationally
inefficient, and can suffer from false convergence. This paper develops the
first computationally efficient method for direct GAM smoothness selection. It
is highly stable, but by careful structuring achieves a computational
efficiency that leads, in simulations, to lower mean computation times than the
schemes based on working-model smoothness selection. The method also offers a
reliable way of fitting generalized additive mixed models
Generalized partially linear models on Riemannian manifolds
We introduce generalized partially linear models with covariates on Riemannian manifolds. These models, like ordinary generalized linear models, are a generalization of partially linear models on Riemannian manifolds that allow for scalar response variables with error distribution models other than a normal distribution. Partially linear models are particularly useful when some of the covariates of the model are elements of a Riemannian manifold, because the curvature of these spaces makes it difficult to define parametric models. The model was developed to address an interesting application: the prediction of children's garment fit based on three‐dimensional scanning of their bodies. For this reason, we focus on logistic and ordinal models and on the important and difficult case where the Riemannian manifold is the three‐dimensional case of Kendall's shape space. An experimental study with a well‐known three‐dimensional database is carried out to check the goodness of the procedure. Finally, it is applied to a three‐dimensional database obtained from an anthropometric survey of the Spanish child population. A comparative study with related techniques is carried out
- …