660 research outputs found

    Soft-decision minimum-distance sequential decoding algorithm for convolutional codes

    Get PDF
    The maximum-likelihood decoding of convolutional codes has generally been considered impractical for other than relatively short constraint length codes, because of the exponential growth in complexity with increasing constraint length. The soft-decision minimum-distance decoding algorithm proposed in the paper approaches the performance of a maximum-likelihood decoder, and uses a sequential decoding approach to avoid an exponential growth in complexity. The algorithm also utilises the distance and structural properties of convolutional codes to considerably reduce the amount of searching needed to find the minimum soft-decision distance paths when a back-up search is required. This is done in two main ways. First, a small set of paths called permissible paths are utilised to search the whole of the subtree for the better path, instead of using all the paths within a given subtree. Secondly, the decoder identifies which subset of permissible paths should be utilised in a given search and which may be ignored. In this way many unnecessary path searches are completely eliminated. Because the decoding effort required by the algorithm is low, and the decoding processes are simple, the algorithm opens the possibility of building high-speed long constraint length convolutional decoders whose performance approaches that of the optimum maximum-likelihood decoder. The paper describes the algorithm and its theoretical basis, and gives examples of its operation. Also, results obtained from practical implementations of the algorithm using a high-speed microcomputer are presented

    On proactive, transparent and verifiable ethical reasoning for robots

    Get PDF
    Previous work on ethical machine reasoning has largely been theoretical, and where such systems have been implemented it has in general been only initial proofs of principle. Here we address the question of desirable attributes for such systems to improve their real world utility, and how controllers with these attributes might be implemented. We propose that ethically-critical machine reasoning should be proactive, transparent and verifiable. We describe an architecture where the ethical reasoning is handled by a separate layer, augmenting a typical layered control architecture, ethically moderating the robot actions. It makes use of a simulation-based internal model, and supports proactive, transparent and verifiable ethical reasoning. To do so the reasoning component of the ethical layer uses our Python based Beliefs, Desires, Intentions (BDI) implementation. The declarative logic structure of BDI facilitates both transparency, through logging of the reasoning cycle, and formal verification methods. To prove the principles of our approach we use a case study implementation to experimentally demonstrate its operation. Importantly, it is the first such robot controller where the ethical machine reasoning has been formally verified

    Modelling a wireless connected swarm of mobile robots

    Get PDF
    It is a characteristic of swarm robotics that modelling the overall swarm behaviour in terms of the low-level behaviours of individual robots is very difficult. Yet if swarm robotics is to make the transition from the laboratory to real-world engineering realisation such models would be critical for both overall validation of algorithm correctness and detailed parameter optimisation. We seek models with predictive power: models that allow us to determine the effect of modifying parameters in individual robots on the overall swarm behaviour. This paper presents results from a study to apply the probabilistic modelling approach to a class of wireless connected swarms operating in unbounded environments. The paper proposes a probabilistic finite state machine (PFSM) that describes the network connectivity and overall macroscopic behaviour of the swarm, then develops a novel robot-centric approach to the estimation of the state transition probabilities within the PFSM. Using measured data from simulation the paper then carefully validates the PFSM model step by step, allowing us to assess the accuracy and hence the utility of the model. © Springer Science + Business Media, LLC 2008

    Soft-decision minimum-distance sequential decoding algorithm for convolutional codes

    Get PDF
    The maximum-likelihood decoding of convolutional codes has generally been considered impractical for other than relatively short constraint length codes, because of the exponential growth in complexity with increasing constraint length. The soft-decision minimum-distance decoding algorithm proposed in the paper approaches the performance of a maximum-likelihood decoder, and uses a sequential decoding approach to avoid an exponential growth in complexity. The algorithm also utilises the distance and structural properties of convolutional codes to considerably reduce the amount of searching needed to find the minimum soft-decision distance paths when a back-up search is required. This is done in two main ways. First, a small set of paths called permissible paths are utilised to search the whole of the subtree for the better path, instead of using all the paths within a given subtree. Secondly, the decoder identifies which subset of permissible paths should be utilised in a given search and which may be ignored. In this way many unnecessary path searches are completely eliminated. Because the decoding effort required by the algorithm is low, and the decoding processes are simple, the algorithm opens the possibility of building high-speed long constraint length convolutional decoders whose performance approaches that of the optimum maximum-likelihood decoder. The paper describes the algorithm and its theoretical basis, and gives examples of its operation. Also, results obtained from practical implementations of the algorithm using a high-speed microcomputer are presented

    On embodied memetic evolution and the emergence of behavioural traditions in Robots

    Get PDF
    This paper describes ideas and initial experiments in embodied imitation using e-puck robots, developed as part of a project whose aim is to demonstrate the emergence of artificial culture in collective robot systems. Imitated behaviours (memes) will undergo variation because of the noise and heterogeneities of the robots and their sensors. Robots can select which memes to enact, and-because we have a multi-robot collective-memes are able to undergo multiple cycles of imitation, with inherited characteristics. We thus have the three evolutionary operators: variation, selection and inheritance, and-as we describe in this paper-experimental trials show that we are able to demonstrate embodied movement-meme evolution. © 2011 Springer-Verlag

    Towards a Formal Verification Methodology for Collective Robotic Systems

    Get PDF
    We introduce a UML-based notation for graphically modeling systems’ security aspects in a simple and intuitive way and a model-driven process that transforms graphical specifications of access control policies in XACML. These XACML policies are then translated in FACPL, a policy language with a formal semantics, and the resulting policies are evaluated by means of a Java-based software tool

    Coulomb and nuclear breakup effects in the single neutron removal reaction 197Au(17C,16C gamma)X

    Get PDF
    We analyze the recently obtained new data on the partial cross sections and parallel momentum distributions for transitions to ground as well as excited states of the 16C core, in the one-neutron removal reaction 197Au(17C,16C gamma)X at the beam energy of 61 MeV/nucleon. The Coulomb and nuclear breakup components of the one-neutron removal cross sections have been calculated within a finite range distorted wave Born approximation theory and an eikonal model, respectively. The nuclear contributions dominate the partial cross sections for the core excited states. By adding the nuclear and Coulomb cross sections together, a reasonable agreement is obtained with the data for these states. The shapes of the experimental parallel momentum distributions of the core states are described well by the theory.Comment: Revtex format, two figures included, to appear in Phys. Rev. C. (Rapid communications
    corecore