6,074 research outputs found

    Measuring stellar differential rotation with high-precision space-borne photometry

    Full text link
    We introduce a method of measuring a lower limit to the amplitude of surface differential rotation from high-precision, evenly sampled photometric time series. It is applied to main-sequence late-type stars whose optical flux modulation is dominated by starspots. An autocorrelation of the time series was used to select stars that allow an accurate determination of starspot rotation periods. A simple two-spot model was applied together with a Bayesian information criterion to preliminarily select intervals of the time series showing evidence of differential rotation with starspots of almost constant area. Finally, the significance of the differential rotation detection and a measurement of its amplitude and uncertainty were obtained by an a posteriori Bayesian analysis based on a Monte Carlo Markov Chain approach. We applied our method to the Sun and eight other stars for which previous spot modelling had been performed to compare our results with previous ones. We find that autocorrelation is a simple method for selecting stars with a coherent rotational signal that is a prerequisite for successfully measuring differential rotation through spot modelling. For a proper Monte Carlo Markov Chain analysis, it is necessary to take the strong correlations among different parameters that exist in spot modelling into account. For the planet-hosting star Kepler-30, we derive a lower limit to the relative amplitude of the differential rotation of \Delta P / P = 0.0523 \pm 0.0016. We confirm that the Sun as a star in the optical passband is not suitable for measuring differential rotation owing to the rapid evolution of its photospheric active regions. In general, our method performs well in comparison to more sophisticated and time-consuming approaches.Comment: Accepted to Astronomy and Astrophysics, 15 pages, 13 figures, 4 tables and an Appendi

    Generalized Miura Transformations, Two-Boson KP Hierarchies and their Reduction to KDV Hierarchies

    Full text link
    Bracket preserving gauge equivalence is established between several two-boson generated KP type of hierarchies. These KP hierarchies reduce under symplectic reduction (via Dirac constraints) to KdV, mKdV and Schwarzian KdV hierarchies. Under this reduction the gauge equivalence is taking form of the conventional Miura maps between the above KdV type of hierarchies.Comment: 12 pgs., LaTeX, IFT-P/011/93, UICHEP-TH/93-

    Determination of spin polarization in InAs/GaAs self-assembled quantum dots

    Full text link
    The spin polarization of electrons trapped in InAs self-assembled quantum dot ensembles is investigated. A statistical approach for the population of the spin levels allows one to infer the spin polarization from the measure values of the addition energies. From the magneto-capacitance spectroscopy data, the authors found a fully polarized ensemble of electronic spins above 10 T when B[001]\mathbf{B}\parallel[001] and at 2.8 K. Finally, by including the g-tensor anisotropy the angular dependence of spin polarization with the magnetic field B\mathbf{B} orientation and strength could be determined.Comment: 3 pages, 2 figures, Accepted Appl. Phys. Let

    Condensation of Vortex-Strings: Effective Potential Contribution Through Dual Actions

    Full text link
    Topological excitations are believed to play an important role in different areas of physics. For example, one case of topical interest is the use of dual models of quantum cromodynamics to understand properties of its vacuum and confinement through the condensation of magnetic monopoles and vortices. Other applications are related to the role of these topological excitations, nonhomogeneous solutions of the field equations, in phase transitions associated to spontaneous symmetry breaking in gauge theories, whose study is of importance in phase transitions in the early universe, for instance. Here we show a derivation of a model dual to the scalar Abelian Higgs model where its topological excitations, namely vortex-strings, become manifest and can be treated in a quantum field theory way. The derivation of the nontrivial contribution of these vacuum excitations to phase transitions and its analogy with superconductivity is then made possible and they are studied here.Comment: 7 pages. Based on a talk given by R. O. Ramos at the Infrared QCD in Rio conference, Rio de Janeiro, Brazil, June 5-9, 200

    BRS Paraguaçu - cultivar de feijão-caupi indicada para o cultivo sob condições de baixo uso de insumos em Roraima.

    Get PDF
    bitstream/item/135789/1/COT-183-N-80.pd

    Functional Bosonization of Non-Relativistic Fermions in (2+1)(2+1) Dimensions

    Full text link
    We analyze the universality of the bosonization rules in non-relativistic fermionic systems in (2+1)d(2+1)d. We show that, in the case of linear fermionic dispersion relations, a general fermionic theory can be mapped into a gauge theory in such a way that the fermionic density maps into a magnetic flux and the fermionic current maps into a transverse electric field. These are universal rules in the sense that they remain valid whatever the interaction considered. We also show that these rules are universal in the case of non-linear dispersion relations provided we consider only density-density interactions. We apply the functional bosonization formalism to a non-relativistic and non-local massive Thirring-like model and evaluate the spectrum of collective excitations in several limits. In the large mass limit, we are able to exactly calculate this spectrum for arbitrary density-density and current-current interactions. We also analyze the massless case and show that it has no collective excitations for any density-density potential in the Gaussian approximation. Moreover, the presence of current interactions may induce a gapless mode with a linear dispersion relation.Comment: 26 Pages, LaTeX, Final version to appear in International Journal of Modern Physics

    Lande g-tensor in semiconductor nanostructures

    Get PDF
    Understanding the electronic structure of semiconductor nanostructures is not complete without a detailed description of their corresponding spin-related properties. Here we explore the response of the shell structure of InAs self-assembled quantum dots to magnetic fields oriented in several directions, allowing the mapping of the g-tensor modulus for the s and p shells. We found that the g-tensors for the s and p shells show a very different behavior. The s-state in being more localized allows the probing of the confining potential details by sweeping the magnetic field orientation from the growth direction towards the in-plane direction. As for the p-state, we found that the g-tensor modulus is closer to that of the surrounding GaAs, consistent with a larger delocalization. These results reveal further details of the confining potentials of self-assembled quantum dots that have not yet been probed, in addition to the assessment of the g-tensor, which is of fundamental importance for the implementation of spin related applications.Comment: 4 pages, 4 figure
    corecore