18 research outputs found

    Do Basic Psychomotor Skills Transfer Between Different Image-based Procedures?

    Get PDF
    Background - Surgical techniques that draw from multiple types of image-based procedures (IBP) are increasing, such as Natural Orifice Transluminal Endoscopic Surgery, fusing laparoscopy and flexible endoscopy. However, little is known about the relation between psychomotor skills for performing different types of IBP. For example, do basic psychomotor colonoscopy and laparoscopy skills interact? Methods - Following a cross-over study design, 29 naïve endoscopists were trained on the Simbionix GI Mentor and the SimSurgery SEP simulators. Group C (n = 15) commenced with a laparoscopy session, followed by four colonoscopy sessions and a second laparoscopy session. Group L (n = 14) started with a colonoscopy session, followed by four laparoscopy sessions and a second colonoscopy session. Results - No significant differences were found between the performances of group L and group C in their first training sessions on either technique. With additional colonoscopy training, group C outperformed group L in the second laparoscopy training session on the camera navigation task. Conclusions - Overall, training in the basic colonoscopy tasks does not affect performance of basic laparoscopy tasks (and vice versa). However, to limited extent, training of basic psychomotor skills for colonoscopy do appear to contribute to the performance of angled laparoscope navigation tasks. Thus, training and assessment of IBP typespecific skills should focus on each type of tasks independently. Future research should further investigate the influence of psychometric abilities on the performance of IBP and the transfer of skills for physicians who are experienced in one IBP type and would like to become proficient in another type of IBP.Industrial DesignIndustrial Design Engineerin

    Predictive mechanisms in the control of contour following

    No full text
    Item does not contain fulltextIn haptic exploration, when running a fingertip along a surface, the control system may attempt to anticipate upcoming changes in curvature in order to maintain a consistent level of contact force. Such predictive mechanisms are well known in the visual system, but have yet to be studied in the somatosensory system. Thus, the present experiment was designed to reveal human capabilities for different types of haptic prediction. A robot arm with a large 3D workspace was attached to the index fingertip and was programmed to produce virtual surfaces with curvatures that varied within and across trials. With eyes closed, subjects moved the fingertip around elliptical hoops with flattened regions or Limaçon shapes, where the curvature varied continuously. Subjects anticipated the corner of the flattened region rather poorly, but for the Limaçon shapes, they varied finger speed with upcoming curvature according to the two-thirds power law. Furthermore, although the Limaçon shapes were randomly presented in various 3D orientations, modulation of contact force also indicated good anticipation of upcoming changes in curvature. The results demonstrate that it is difficult to haptically anticipate the spatial location of an abrupt change in curvature, but smooth changes in curvature may be facilitated by anticipatory predictions.12 p
    corecore