517 research outputs found

    Lightweight Carbon Fiber Mirrors for Solar Concentrator Applications

    Get PDF
    Lightweight parabolic mirrors for solar concentrators have been fabricated using carbon fiber reinforced polymer (CFRP) and a nanometer scale optical surface smoothing technique. The smoothing technique improved the surface roughness of the CFRP surface from ~3 {\mu}m root mean square (RMS) for as-cast to ~5 nm RMS after smoothing. The surfaces were then coated with metal, which retained the sub-wavelength surface roughness, to produce a high-quality specular reflector. The mirrors were tested in an 11x geometrical concentrator configuration and achieved an optical efficiency of 78% under an AM0 solar simulator. With further development, lightweight CFRP mirrors will enable dramatic improvements in the specific power, power per unit mass, achievable for concentrated photovoltaics in space.Comment: IEEE Photovoltaic Specialist Conference (PVSC), DC, USA, 201

    Extremely broadband ultralight thermally emissive metasurfaces

    Get PDF
    We report the design, fabrication and characterization of ultralight highly emissive metaphotonic structures with record-low mass/area that emit thermal radiation efficiently over a broad spectral (2 to 35 microns) and angular (0-60 degrees) range. The structures comprise one to three pairs of alternating nanometer-scale metallic and dielectric layers, and have measured effective 300 K hemispherical emissivities of 0.7 to 0.9. To our knowledge, these structures, which are all subwavelength in thickness are the lightest reported metasurfaces with comparable infrared emissivity. The superior optical properties, together with their mechanical flexibility, low outgassing, and low areal mass, suggest that these metasurfaces are candidates for thermal management in applications demanding of ultralight flexible structures, including aerospace applications, ultralight photovoltaics, lightweight flexible electronics, and textiles for thermal insulation

    Extremely broadband ultralight thermally emissive metasurfaces

    Get PDF
    We report the design, fabrication and characterization of ultralight highly emissive metaphotonic structures with record-low mass/area that emit thermal radiation efficiently over a broad spectral (2 to 35 microns) and angular (0–60°) range. The structures comprise one to three pairs of alternating nanometer-scale metallic and dielectric layers, and have measured effective 300 K hemispherical emissivities of 0.7 to 0.9. To our knowledge, these structures, which are all subwavelength in thickness are the lightest reported metasurfaces with comparable infrared emissivity. The superior optical properties, together with their mechanical flexibility, low outgassing, and low areal mass, suggest that these metasurfaces are candidates for thermal management in applications demanding of ultralight flexible structures, including aerospace applications, ultralight photovoltaics, lightweight flexible electronics, and textiles for thermal insulation

    The role of morbid obesity in the promotion of metabolic disruptions and non-alcoholic steatohepatitis by Helicobacter Pylori

    Get PDF
    Helicobacter pylory (HP) infection has been associated to an increased rate of type 2 diabetes (T2D) and liver disease through its effect on insulin resistance and systemic inflammation. However, results are inconstant and no studies exist in morbidly obese patients, in which both insulin resistance and inflammation coexist

    A lightweight tile structure integrating photovoltaic conversion and RF power transfer for space solar power applications

    Get PDF
    We demonstrate the development of a prototype lightweight (1.5 kg/m^3) tile structure capable of photovoltaic solar power capture, conversion to radio frequency power, and transmission through antennas. This modular tile can be repeated over an arbitrary area to forma large aperture which could be placed in orbit to collect sunlight and transmit electricity to any location. Prototype design is described and validated through finite element analysis, and high-precision ultra-light component manufacture and robust assembly are described
    corecore