796 research outputs found

    Multipole Expansion for Relativistic Coulomb Excitation

    Get PDF
    We derive a general expression for the multipole expansion of the electro-magnetic interaction in relativistic heavy-ion collisions, which can be employed in higher-order dynamical calculations of Coulomb excitation. The interaction has diagonal as well as off-diagonal multipole components, associated with the intrinsic and relative coordinates of projectile and target. A simple truncation in the off-diagonal components gives excellent results in first-order perturbation theory for distant collisions and for beam energies up to 200 MeV/nucleon.Comment: 3 figures, Accepted for publication in Phys. Rev.

    Sensitivity to multi-phonon excitations in heavy-ion fusion reactions

    Full text link
    Measured cross sections for the fusion of {64}Ni with {64}Ni, {74}Ge, and {100}Mo targets are analyzed in a coupled-channels approach. The data for the {64}Ni target above 0.1 mb are reproduced by including couplings to the low-lying 2^+ and 3^- states and the mutual and two-phonon excitations of these states. The calculations become more challenging as the fusing nuclei become softer and heavier, and excitations to multi-phonon states start to play an increasingly important role. Thus it is necessary to include up to four-phonon excitations in order to reproduce the data for the {64}Ni+{74}Ge system. Similar calculations for {64}Ni+{100}Mo, and also for the symmetric {74}Ge+{74}Ge system, show large discrepancies with the data. Possible ways to improve the calculations are discussed.Comment: 24 pages, 7 figures, 4 table

    A non-perturbative approach to halo breakup

    Get PDF
    The theory of weakly bound cluster breakup, like halo nucleus breakup, needs an accurate treatment of the transitions from bound to continuum states induced by the nuclear and Coulomb potentials. When the transition probability is not very small, a non-perturbative framework might be necessary. Nuclear excitation dominates at small impact parameters whereas the Coulomb potential being long range acts over a larger impact parameter interval. In this article, we propose an effective breakup amplitude which meets a number of requirements necessary for an accurate quantitative description of the breakup reaction mechanism. Furthermore our treatment gives some insight on the interplay between time dependent perturbation theory and sudden approximation and it allows to include the nuclear and Coulomb potentials to all orders within an eikonal-like framework.Comment: 22 Latex pages, 1 table, 8 eps figures. Accepted for publication on Nucl. Phys.

    Signature of Shallow Potentials in Deep Sub-barrier Fusion Reactions

    Get PDF
    We extend a recent study that explained the steep falloff in the fusion cross section at energies far below the Coulomb barrier for the symmetric dinuclear system 64Ni+64Ni to another symmetric system, 58Ni+58Ni, and the asymmetric system 64Ni+100Mo. In this scheme the very sensitive dependence of the internal part of the nuclear potential on the nuclear equation of state determines a reduction of the classically allowed region for overlapping configurations and consequently a decrease in the fusion cross sections at bombarding energies far below the barrier. Within the coupled-channels method, including couplings to the low-lying 2+ and 3- states in both target and projectile as well as mutual and two-phonon excitations of these states, we calculate and compare with the experimental fusion cross sections, S-factors, and logarithmic derivatives for the above mentioned systems and find good agreement with the data even at the lowest energies. We predict, in particular, a distinct double peaking in the S-factor for the far subbarrier fusion of 58Ni+58Ni which should be tested experimentally.Comment: 34 pages, 10 figures, to appear in Phys. Rev.

    Dynamical deformation effects in subbarrier fusion of 64^{64}Ni+132^{132}Sn

    Get PDF
    We show that dynamical deformation effects play an important role in fusion reactions involving the 64^{64}Ni nucleus, in particular the 64^{64}Ni+132^{132}Sn system. We calculate fully microscopic interaction potentials and the corresponding subbarrier fusion cross sections.Comment: 3 pages, 2 figure

    Nuclear pairing and Coriolis effects in proton emitters

    Full text link
    We introduce a Hartree-Fock-Bogoliubov mean-field approach to treat the problem of proton emission from a deformed nucleus. By substituting a rigid rotor in a particle-rotor-model with a mean-field we obtain a better description of experimental data in 141^{141}Ho. The approach also elucidates the softening of kinematic coupling between particle and collective rotation, the Coriolis attenuation problem.Comment: 2 pages, 1 figur
    corecore