11 research outputs found

    The guanine nucleotide exchange factor Vav2 is a negative regulator of parathyroid hormone receptor/G(q) signaling.

    Get PDF
    The parathyroid hormone receptor (PTHR) is a class B G protein-coupled receptor (GPCR) that mediates the endocrine and paracrine effects of parathyroid hormone and related peptides through the activation of phospholipase C beta-, adenylyl cyclase-, mitogen-activated protein kinase-, and beta-arrestin-initiated signaling pathways. It is currently not clear how specificity among these downstream signaling pathways is achieved. A possible mechanism involves adaptor proteins that affect receptor/effector coupling. In a proteomic screen with the PTHR C terminus, we identified vav2, a guanine nucleotide exchange factor (GEF) for Rho GTPases, as a PTHR-interacting protein. The core domains of vav2 bound to the intracellular domains of the PTHR independent of receptor activation. In addition, vav2 specifically interacted with activated G alpha(q) but not with G alpha(s) subunits, and it competed with PTHR for coupling to G alpha(q). Consistent with its specific interaction with G alpha(q), vav2 impaired G(q)-mediated inositol phosphate generation but not G(s)-mediated cAMP generation. This inhibition of G(q) signaling was specific for PTHR signaling, compared with other G(q)-coupled GPCRs. Moreover, the benefit for PTHR-mediated inositol phosphate generation in the absence of vav2 required the ezrin binding domain of Na+/H+-exchanger regulatory factor 1. Our results show that a RhoA GEF can specifically interact with a GPCR and modulate its G protein signaling specificity

    Time-Resolved FRET Strategy to Screen GPCR Ligand Library

    No full text
    International audienceScreening chemical libraries to find specific drugs for G protein-coupled receptors is still of major interest. Indeed, because of their major roles in all physiological functions, G protein-coupled receptors remain major targets for drug development programs. Currently, interest in GPCRs as drug targets has been boosted by the discovery of biased ligands, thus allowing the development of drugs not only specific for one target but also for the specific signaling cascade expected to have the therapeutic effect. Such molecules are then expected to display fewer side effects. To reach such a goal, there is much interest in novel, efficient, simple, and direct screening assays that may help identify any drugs interacting with the target, these being then analyzed for their biased activity. Here, we present an efficient strategy to screen ligands on their binding properties. The method described is based on time-resolved FRET between a receptor and a ligand. This method has already been used to develop new assays called Tag-lite® binding assays for numerous G protein-coupled receptors, proving its broad application and its power

    Fluorescent-Based Strategies to Investigate G Protein-Coupled Receptors: Evolution of the Techniques to a Better Understanding

    No full text
    International audienc

    Time-gated luminescence acquisition for biochemical sensing: miRNA detection*Relacionar en OpeAire*

    No full text
    Luminescence emission is a multidimensional phenomenon comprising a time-domain layer defined by its excited-state kinetics and corresponding lifetime, which is specific to each luminophore and depends on environmental conditions. This feature allows for the discrimination of luminescence signals from species with a similar spectral profile but different lifetimes by time-gating (TG) the acquisition of luminescence. This approach represents an efficient tool for removing unwanted, usually short-lived, signals from scattered light and fluorescence interferents using luminophores with a long lifetime. Due to the emergence of time-resolved techniques using rapid excitation and acquisition methods (i.e., pulsed lasers and single-photon timing acquisition) and new long-lifetime luminophores (i.e., acridones, lanthanide complexes, nanoparticles, etc.), TG analyses can be easily applied to relevant chemical and biochemical issues. The successful application of TG to important biomedical topics has attracted the attention of the R&D industry due to its potential in the development and patenting of new probes, methods and techniques for drug discovery, immunoassays, biomarker discovery and biomolecular interactions, etc. Here, we review the technological efforts of innovative companies in the application of TG-based techniques. Among the many currently available biomarkers, circulating microRNAs (miRNAs) have received attention since they are highly specific and sensitive to different pathological stages of numerous diseases and easily accessible from biological fluids. qPCR is a powerful and routine technique used for the detection and quantification of miRNAs, but qPCR may introduce numerous artefacts and low reproducibility during the amplification process, particularly using complex samples. Thus, due to the efficiency of TG in separating short- lived sources of fluorescence common in biological fluids, TG is an ideal approach for the direct detection of miRNAs in liquid biopsies. Recently, great efforts in the use of TG have been achieved. Our contribution is the proposal of a direct detection approach using TG- imagining with single nucleobase resolution.European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 690866 (miRNA-DisEASY)Proyecto CTQ2017-85658-R. Ministerio de Economía y Competitividad/Agencia Estatal deInvestigación/Fondo Europeo de Desarrollo Regional (FEDER
    corecore