219 research outputs found

    Characterization of the Inlet Port Flow under Steady-State Conditions Using PIV and POD

    Get PDF
    The current study demonstrates an experimental investigation of the tumble flow structures using Particle Image Velocimetry (PIV) under steady-state conditions considering the central vertical tumble plane. The experiments were carried out on a four-valve, pent-roof Gasoline Direct Injection (GDI) engine head at different valve lifts and with a pressure difference of 150 mmH2O across the intake valves. Furthermore, the Proper Orthogonal Decomposition (POD) analytical technique was applied to PIV-measured velocity vector maps to characterize the flow structures at various valve lifts, and hence the different rig tumble values. The results show that at low valve lifts (1 to 5 mm), 48.9 to 46.6% of the flow energy is concentrated in the large (mode 1) eddies with only 8.4 to 11.46% in mode 2 and 7.2 to 7.5 in mode 3. At high valve lifts, it can be clearly seen that some of the energy in the large eddies of mode 1 is transferred to the smaller flow structures of modes 2 and 3. This can be clearly seen at valve lift 10 mm where the values of the flow energy were 40.6%, 17.3%, and 8.0% for modes 1, 2, and 3, respectively

    Identification, Genotyping and Antimicrobial Susceptibility Testing of Brucella spp. Isolated from Livestock in Egypt

    Get PDF
    Brucellosis is a highly contagious zoonosis worldwide with economic and public health impacts. The aim of the present study was to identify Brucella (B.) spp. isolated from animal populations located in different districts of Egypt and to determine their antimicrobial resistance. In total, 34-suspected Brucella isolates were recovered from lymph nodes, milk, and fetal abomasal contents of infected cattle, buffaloes, sheep, and goats from nine districts in Egypt. The isolates were identified by microbiological methods and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Differentiation and genotyping were confirmed using multiplex PCR for B. abortus, Brucella melitensis, Brucella ovis, and Brucella suis (AMOS) and Bruce-ladder PCR. Antimicrobial susceptibility testing against clinically used antimicrobial agents (chloramphenicol, ciprofloxacin, erythromycin, gentamicin, imipenem, rifampicin, streptomycin, and tetracycline) was performed using E-Test. The antimicrobial resistance-associated genes and mutations in Brucella isolates were confirmed using molecular tools. In total, 29 Brucella isolates (eight B. abortus biovar 1 and 21 B. melitensis biovar 3) were identified and typed. The resistance of B. melitensis to ciprofloxacin, erythromycin, imipenem, rifampicin, and streptomycin were 76.2%, 19.0%, 76.2%, 66.7%, and 4.8%, respectively. Whereas, 25.0%, 87.5%, 25.0%, and 37.5% of B. abortus were resistant to ciprofloxacin, erythromycin, imipenem, and rifampicin, respectively. Mutations in the rpoB gene associated with rifampicin resistance were identified in all phenotypically resistant isolates. Mutations in gyrA and gyrB genes associated with ciprofloxacin resistance were identified in four phenotypically resistant isolates of B. melitensis. This is the first study highlighting the antimicrobial resistance in Brucella isolated from different animal species in Egypt. Mutations detected in genes associated with antimicrobial resistance unravel the molecular mechanisms of resistance in Brucella isolates from Egypt. The mutations in the rpoB gene in phenotypically resistant B. abortus isolates in this study were reported for the first time in Egypt

    Occurrence of Salmonella enterica and Escherichia coli in raw chicken and beef meat in northern Egypt and dissemination of their antibiotic resistance markers

    Get PDF
    Background The global incidence of foodborne infections and antibiotic resistance is recently increased and considered of public health concern. Currently, scarcely information is available on foodborne infections and ESBL associated with poultry and beef meat in Egypt. Methods In total, 180 chicken and beef meat samples as well as internal organs were collected from different districts in northern Egypt. The samples were investigated for the prevalence and antibiotic resistance of Salmonella enterica serovars and Escherichia coli. All isolates were investigated for harbouring class 1 and class 2 integrons. Results Out of 180 investigated samples 15 S. enterica (8.3%) and 21 E. coli (11.7%) were isolated and identified. S. enterica isolates were typed as 9 S. Typhimurium (60.0%), 3 S. Paratyphi A (20.0%), 2 S. Enteritidis (13.3%) and 1 S. Kentucky (6.7%). Twenty-one E. coli isolates were serotyped into O1, O18, O20, O78, O103, O119, O126, O145, O146 and O158. The phenotypic antibiotic resistance profiles of S. enterica serovars to ampicillin, cefotaxime, cefpodoxime, trimethoprim/sulphamethoxazole and tetracycline were 86.7, 80.0, 60.0, 53.3 and 40.0%, respectively. Isolated E. coli were resistant to tetracycline (80.9%), ampicillin (71.4%), streptomycin, trimethoprim/sulphamethoxazole (61.9% for each) and cefotaxime (33.3%). The dissemination of genes coding for ESBL and AmpC β-lactamase in S. enterica isolates included bla CTX-M (73.3%), bla TEM (73.3%) and bla CMY (13.3%). In E. coli isolates bla TEM, bla CTX-M and bla OXA were identified in 52.4, 42.9 and 14.3%, respectively. The plasmid-mediated quinolone resistance genes identified in S. enterica were qnrA (33.3%), qnrB (20.0%) and qnrS (6.7%) while qnrA and qnrB were detected in 33.3% of E. coli isolates. Class 1 integron was detected in 13.3% of S. enterica and in 14.3% of E. coli isolates. Class 2 integron as well as the colistin resistance gene mcr-1 was not found in any of E. coli or S. enterica isolates. Conclusions This study showed high prevalence of S. enterica and E. coli as foodborne pathogens in raw chicken and beef meat in Nile Delta, Egypt. The emergence of antimicrobial resistance in S. enterica and E. coli isolates is of public health concern in Egypt. Molecular biological investigation elucidated the presence of genes associated with antibiotic resistance as well as class 1 integron in S. enterica and E. coli

    The influence of circulating anti-Müllerian hormone on ovarian responsiveness to ovulation induction with gonadotrophins in women with polycystic ovarian syndrome: a pilot study

    Get PDF
    Background Women with polycystic ovarian syndrome (PCOS) are known to have elevated circulating Anti-Müllerian hormone (AMH), which has been found to desensitize ovarian follicles to follicle stimulating hormone (FSH). The purpose of this study was to investigate the impact of high circulating AMH on ovarian responsiveness to ovulation induction with gonadotrophins in PCOS women. Methods This prospective observational pilot study was conducted in two collaborating Fertility Centres in the UK and Egypt. The study included 20 consecutive anovulatory women with PCOS who underwent 34 cycles of human menopausal gonadotrophin (hMG) ovarian stimulation using chronic low-dose step up protocol. Blood samples were collected for the measurement of serum AMH concentrations in the early follicular (day 2-3) phase in all cycles of hMG treatment. The serum levels of AMH were compared between cycles with good vs. poor response. The good response rates and the total dose and duration of hMG treatment were compared between cycles with high vs. low serum AMH concentrations. Results Cycles with poor response (no or delayed ovulation requiring >20 days of hMG treatment) had significantly (p = .007) higher median{range} serum AMH concentration (6.5{3.2-13.4}ng/ml) compared to that (4.0{2.2-10.2}ng/ml) of cycles with good response (ovulation within 20 days of hMG treatment). ROC curve showed AMH to be a useful predictor of poor response to hMG stimulation (AUC, 0.772; P = 0.007). Using a cut-off level of 4.7 ng/ml, AMH had a sensitivity of 100% and specificity of 58% in predicting poor response. The good response rate was significantly (p  = 4.7 ng/ml (100% vs. 35%, respectively). All cycles with markedly raised serum AMH levels (> 10.2 ng/ml) were associated with poor response. Cycles with high AMH (> = 4.7 ng/ml) required significantly (p < .001) greater amounts (median {range}, 1087{450-1650}IU) and longer duration (20 {12-30}days) of hMG stimulation than cycles with lower AMH (525 {225-900}IU and 8{6-14}days). Conclusions PCOS women with markedly raised circulating AMH seem to be resistant to hMG ovulation induction and may require a higher starting dose

    Epidemiological, molecular characterization and antibiotic resistance of Salmonella enterica serovars isolated from chicken farms in Egypt

    Get PDF
    Background Salmonella is one of major causes of foodborne outbreaks globally. This study was conducted to estimate the prevalence, typing and antibiotic susceptibilities of Salmonella enterica serovars isolated from 41 broiler chicken farms located in Kafr El-Sheikh Province in Northern Egypt during 2014–2015. The clinical signs and mortalities were observed. Results In total 615 clinical samples were collected from broiler flocks from different organs (liver, intestinal content and gall bladder). Salmonella infection was identified in 17 (41%) broiler chicken flocks and 67 Salmonella isolates were collected. Recovered isolates were serotyped as 58 (86.6%) S. enterica serovar Typhimurium, 6 (9%) S. enterica serovar Enteritidis and 3 (4.5%) were non- typable. The significant high mortality rate was observed only in 1-week-old chicks. sopE gene was detected in 92.5% of the isolates which indicating their ability to infect humans. All S. enterica serovar Enteritidis isolates were susceptible to all tested antimicrobials. The phenotypically resistant S. enterica serovar Typhimurium isolates against ampicillin, tetracycline, sulphamethoxazole and chloramphenicol were harbouring BlaTEM, (tetA and tetC), (sul1 and sul3) and (cat1 and floR), respectively. The sensitivity rate of S. enterica serovar Typhimurium to gentamycin, trimethoprim/sulphamethoxazole and streptomycin were 100, 94.8, 89.7%, respectively. The silent streptomycin antimicrobial cassettes were detected in all Salmonella serovars. A class one integron (dfrA12, orfF and aadA2) was identified in three of S. enterica serovar Typhimurium strains. Conclusions To the best of our knowledge, this study considered first report discussing the prevalence, genotyping, antibiotic susceptibility and public health significance of S. enterica serovars in broilers farms of different ages in Delta Egypt. Further studies are mandatory to verify the location of some resistance genes that are within or associated with the class one integron

    Evolution of Antibiotic Resistance of Coagulase-Negative Staphylococci Isolated from Healthy Turkeys in Egypt: First Report of Linezolid Resistance

    Get PDF
    Coagulase-negative staphylococci (CoNS) are gaining much attention as causative agents of serious nosocomial infections in humans. This study aimed to determine the prevalence and phenotypic antimicrobial resistance of CoNS as well as the presence of resistance-associated genes in CoNS isolated from turkey farms in Egypt. Two hundred and fifty cloacal swabs were collected from apparently healthy turkeys in Egypt. Suspected isolates were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The susceptibility testing of CoNS isolates against 20 antimicrobial agents was performed using the broth microdilution test. The presence of resistance-associated genes like mecA, vanA, blaZ, erm(A), erm(B), erm(C), aac-aphD, optrA, valS, and cfr was determined. Thirty-nine CoNS were identified. All isolates were phenotypically resistant to trimethoprim/sulfamethoxazole, penicillin, ampicillin, and tetracycline. The resistance rates to erythromycin, chloramphenicol, oxacillin, daptomycin, and tigecycline were 97.4%, 94.9%, 92.3%, 89.7%, and 87.2%, respectively. Thirty-one isolates were resistant to linezolid (79.5%). Low resistance rate was detected for both imipenem and vancomycin (12.8%). The erm(C) gene was identified in all erythromycin phenotypically resistant isolates, whereas two resistant isolates possessed three resistance-conferring genes erm(A), erm(B), and erm(C). The cfr and optrA genes were detected in 11 (35.5%) and 12 (38.7%) of the 31 linezolid-resistant isolates. The mecA, aac-aphD, and blaZ genes were identified in 22.2%, 41.9%, and 2.6% of phenotypically resistant isolates to oxacillin, gentamicin, and penicillin, respectively. This is the first study revealing the correlation between linezolid resistance and presence of cfr and optrA genes in CoNS isolates from Egypt, and it can help to improve knowledge about the linezolid resistance mechanism

    Effect of Boost Pressure on the In-Cylinder Tumble-Motion of GDI Engine under Steady-State Conditions using Stereoscopic-PIV

    Get PDF
    This paper experimentally investigates the effect of boost pressure on the in-cylinder flow field under steady-state conditions using stereoscopic particle image velocimetry (Stereo-PIV) through increasing the pressure difference across the intake valves. The FEV steady-state flow bench was modified to provide an optical access into the cylinder region. The stereoscopic PIV measurements were carried out at various pressure differences viz., 300, 450, and 600 mmH2O across the intake valves of Gasoline Direct Injection (GDI) head for the mid cylinder vertical tumble-plane. Ensemble average velocity vectors were used to characterize the tumble flow structure and for the calculation of tumble ratio and average turbulent kinetic energy. Moreover, the Proper Orthogonal Decomposition (POD) technique was conducted on the PIV measured velocity vector maps to identify the most energetic structures generated at different valve lifts and pressure differences. The results of stereoscopic PIV measurements showed that the overall in-cylinder flow structures were mainly dependent on the valve lift irrespective of the applied pressure difference. However, the level of the turbulence kinetic energy increased as the boost pressure increased

    Effect of boost pressure on the in-cylinder tumble- motion of GDI engine under steady-state conditions using Stereoscopic-PIV

    Get PDF
    This paper experimentally investigates the effect of boost pressure on the in-cylinder flow field under steady-state conditions using stereoscopic particle image velocimetry (Stereo-PIV) through increasing the pressure difference across the intake valves. The FEV steady-state flow bench was modified to provide an optical access into the cylinder region. The stereoscopic PIV measurements were carried out at various pressure differences viz., 300, 450, and 600 mmH2O across the intake valves of Gasoline Direct Injection (GDI) head for the mid cylinder vertical tumble-plane. Ensemble average velocity vectors were used to characterize the tumble flow structure and for the calculation of tumble ratio and average turbulent kinetic energy. Moreover, the Proper Orthogonal Decomposition (POD) technique was conducted on the PIV measured velocity vector maps to identify the most energetic structures generated at different valve lifts and pressure differences. The results of stereoscopic PIV measurements showed that the overall in-cylinder flow structures were mainly dependent on the valve lift irrespective of the applied pressure difference. However, the level of the turbulence kinetic energy increased as the boost pressure increased
    • …
    corecore