221 research outputs found

    The impact of corporate philanthropy on reputation for corporate social performance

    Get PDF
    This study seeks to examine the mechanisms by which a corporation’s use of philanthropy affects its reputation for corporate social performance (CSP), which the authors conceive of as consisting of two dimensions: CSP awareness and CSP perception. Using signal detection theory (SDT), the authors model signal amplitude (the amount contributed), dispersion (number of areas supported), and consistency (presence of a corporate foundation) on CSP awareness and perception. Overall, this study finds that characteristics of firms' portfolio of philanthropic activities are a greater predictor of CSP awareness than of CSP perception. Awareness increases with signal amplitude, dispersion, and consistency. CSP perception is driven by awareness and corporate reputation. The authors’ contention that corporate philanthropy is a complex variable is upheld, as we find that CSP signal characteristics influence CSP awareness and perception independently and asymmetrically. The authors conclude by proposing avenues for future research

    Experimental evaluation of the energy balance in Octopus vulgaris, fed ad libitum on a high-lipid diet

    Get PDF
    Abstract A complete energy balance equation was estimated for the common octopus Octopus vulgaris at a constant temperature of 20°C, fed ad libitum on anchovy fillet (Engraulis encrasicolus). Energy used for growth and respiration or lost with faeces and excreted ammonia was estimated, along with total energy consumption through food, for six specimens of O. vulgaris (with masses between 114 and 662 g). The energy balance equation was estimated for the specimens at 10-day intervals. During each 10-day interval, food consumed, body mass increase and quantity of faeces voided were measured. The calorific values of octopus flesh, anchovy flesh and faeces were measured by bomb calorimetry. Oxygen consumption and ammonia excretion rates were monitored for each specimen during three 24-h experiments and daily oxygen consumption and ammonia excretion were estimated. It was found that 58% of the energy consumed was used for respiration. The amount of energy invested in somatic and gonadal growth represented 26% of the total energy budget. The energy discarded through faeces was 13% of consumed energy. The estimated assimilation efficiency (AE) values of O. vulgaris feeding on anchovy (80.9-90.7%) were lower than the AE values estimated for other cephalopod species with different diets of lower lipid content such as crabs or mussels. Specific growth rates (SGR) ranged 0.43-0.95 and were similar to those reported for other high-lipid diets (bogue, sardine) and lower than SGR values found for low-lipid, high-protein diets (squid, crab, natural diet). Ammonia excretion peak (6 h after feeding) followed the one of oxygen consumption (1 h after feeding). The values of atomic oxygen-to-nitrogen (O:N) ratio indicated a protein-dominated metabolism for O. vulgaris

    Exploring sensory phenotypes in autism spectrum disorder

    Get PDF
    Background: Atypical reactions to the sensory environment are often reported in autistic individuals, with a high degree of variability across the sensory modalities. These sensory differences have been shown to promote challenging behaviours and distress in autistic individuals and are predictive of other functions including motor, social, and cognitive abilities. Preliminary research suggests that specific sensory differences may cluster together within individuals creating discrete sensory phenotypes. However, the manner in which these sensory differences cluster, and whether the resulting phenotypes are associated with specific cognitive and social challenges is unclear. Methods: Short sensory profile data from 599 autistic children and adults between the ages of 1 and 21 years were subjected to a K-means cluster analysis. Analysis of variances compared age, adaptive behaviour, and traits associated with autism, attention-deficit and hyperactivity disorder, and obsessive and compulsive disorder across the resultant clusters. Results: A five-cluster model was found to minimize error variance and produce five sensory phenotypes: (1) sensory adaptive, (2) generalized sensory differences, (3) taste and smell sensitivity, (4) under-responsive and sensation seeking, and (5) movement difficulties with low energy. Age, adaptive behaviour, and traits associated with autism, attention-deficit and hyperactivity disorder, and obsessive and compulsive disorder were found to differ significantly across the five phenotypes. Limitations: The results were based on parent-report measures of sensory processing, adaptive behaviour, traits associated with autism, attention-deficit and hyperactivity disorder, and obsessive and compulsive disorder, which may limit the generalizability of the findings. Further, not all measures are standardized, or psychometrically validated with an autism population. Autistic individuals with an intellectual disability were underrepresented in this sample. Further, as these data were obtained from established records from a large provincial database, not all measures were completed for all individuals. Conclusions: These findings suggest that sensory difficulties in autistic individuals can be clustered into sensory phenotypes, and that these phenotypes are associated with behavioural differences. Given the large degree of heterogeneity in sensory difficulties seen in the autistic population, these sensory phenotypes represent an effective way to parse that heterogeneity and create phenotypes that may aid in the development of effective treatments and interventions for sensory difficulties

    The Effect of Gas Cooling on the Shapes of Dark Matter Halos

    Full text link
    We analyze the effect of dissipation on the shapes of dark matter (DM) halos using high-resolution cosmological gasdynamics simulations of clusters and galaxies in the LCDM cosmology. We find that halos formed in simulations with gas cooling are significantly more spherical than corresponding halos formed in adiabatic simulations. Gas cooling results in an average increase of the principle axis ratios of halos by ~ 0.2-0.4 in the inner regions. The systematic difference decreases slowly with radius but persists almost to the virial radius. We argue that the differences in simulations with and without cooling arise both during periods of quiescent evolution, when gas cools and condenses toward the center, and during major mergers. We perform a series of high-resolution N-body simulations to study the shapes of remnants in major mergers of DM halos and halos with embedded stellar disks. In the DM halo-only mergers, the shape of the remnants depends only on the orbital angular momentum of the encounter and not on the internal structure of the halos. However, significant shape changes in the DM distribution may result if stellar disks are included. In this case the shape of the DM halos is correlated with the morphology of the stellar remnants.Comment: Accepted for publication in ApJL, 5 pages, 3 figures, LaTeX (uses emulateapj5.sty

    Multi-membership gene regulation in pathway based microarray analysis

    Get PDF
    This article is available through the Brunel Open Access Publishing Fund. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background: Gene expression analysis has been intensively researched for more than a decade. Recently, there has been elevated interest in the integration of microarray data analysis with other types of biological knowledge in a holistic analytical approach. We propose a methodology that can be facilitated for pathway based microarray data analysis, based on the observation that a substantial proportion of genes present in biochemical pathway databases are members of a number of distinct pathways. Our methodology aims towards establishing the state of individual pathways, by identifying those truly affected by the experimental conditions based on the behaviour of such genes. For that purpose it considers all the pathways in which a gene participates and the general census of gene expression per pathway. Results: We utilise hill climbing, simulated annealing and a genetic algorithm to analyse the consistency of the produced results, through the application of fuzzy adjusted rand indexes and hamming distance. All algorithms produce highly consistent genes to pathways allocations, revealing the contribution of genes to pathway functionality, in agreement with current pathway state visualisation techniques, with the simulated annealing search proving slightly superior in terms of efficiency. Conclusions: We show that the expression values of genes, which are members of a number of biochemical pathways or modules, are the net effect of the contribution of each gene to these biochemical processes. We show that by manipulating the pathway and module contribution of such genes to follow underlying trends we can interpret microarray results centred on the behaviour of these genes.The work was sponsored by the studentship scheme of the School of Information Systems, Computing and Mathematics, Brunel Universit

    Aerosol properties derived from ground-based Fourier transform spectra within the COllaborative Carbon Column Observing Network

    Get PDF
    Fourier transform infrared (FTIR) spectroscopy is particularly relevant for climate studies due to its ability to provide information on both fine absorption structures (i.e. trace gases) and broadband continuum signatures (i.e. aerosols or water continuum) across the entire infrared (IR) domain. In this context, this study assesses the capability of the portable and compact EM27/SUN spectrometer, used within the research infrastructure COCCON (COllaborative Carbon Column Observing Network), to retrieve spectral aerosol properties from low-resolution FTIR solar absorption spectra (0.5 cm−1). The study focuses on the retrieval of aerosol optical depth (AOD) and its spectral dependence in the 873–2314 nm spectral range from COCCON measurements at the subtropical high-mountain Izaña Observatory (IZO, Tenerife, Spain), which were coincidentally carried out with standard sun photometry within the Aerosol Robotic Network (AERONET) in the 3-year period from December 2019 to September 2022. The co-located AERONET–COCCON database was used to cross-validate these two independent techniques in the common spectral range (870–1640 nm), demonstrating an excellent agreement at the near-coincident spectral bands (mean AOD differences limited to 0.005, standard deviations up to 0.021 and Pearson regression coefficients up to 0.97). This indicates that the low-resolution COCCON instruments are suitable for detecting the aerosol broadband signal contained in the IR spectra in addition to the retrieval of precise trace gas concentrations, provided a robust calibration procedure (Langley-based or absolute calibration procedures) is used to compensate for the optical degradation of the external system (∌ 0.72 % per month). The study also assesses the capability of the EM27/SUN to simultaneously infer aerosols and trace gases and relate their common emission sources in two case study events: a volcanic plume from the La Palma eruption in 2021 and a nearby forest fire in Tenerife in 2022. Overall, our results demonstrate the potential of the portable low-resolution COCCON instruments to enhance the multi-parameter capability of the FTIR technique for atmospheric monitoring.</p

    A novel rapamycin analog is highly selective for mTORC1 in vivo.

    Get PDF
    Rapamycin, an inhibitor of mechanistic Target Of Rapamycin Complex 1 (mTORC1), extends lifespan and shows strong potential for the treatment of age-related diseases. However, rapamycin exerts metabolic and immunological side effects mediated by off-target inhibition of a second mTOR-containing complex, mTOR complex 2. Here, we report the identification of DL001, a FKBP12-dependent rapamycin analog 40x more selective for mTORC1 than rapamycin. DL001 inhibits mTORC1 in cell culture lines and in vivo in C57BL/6J mice, in which DL001 inhibits mTORC1 signaling without impairing glucose homeostasis and with substantially reduced or no side effects on lipid metabolism and the immune system. In cells, DL001 efficiently represses elevated mTORC1 activity and restores normal gene expression to cells lacking a functional tuberous sclerosis complex. Our results demonstrate that highly selective pharmacological inhibition of mTORC1 can be achieved in vivo, and that selective inhibition of mTORC1 significantly reduces the side effects associated with conventional rapalogs

    Aerosol properties derived from ground-based Fourier transform spectra within the COllaborative Carbon Column Observing Network

    Get PDF
    Fourier transform infrared (FTIR) spectroscopy is particularly relevant for climate studies due to its ability to provide information on both fine absorption structures (i.e. trace gases) and broadband continuum signatures (i.e. aerosols or water continuum) across the entire infrared (IR) domain. In this context, this study assesses the capability of the portable and compact EM27/SUN spectrometer, used within the research infrastructure COCCON (COllaborative Carbon Column Observing Network), to retrieve spectral aerosol properties from low-resolution FTIR solar absorption spectra (0.5 cm−1^{−1}). The study focuses on the retrieval of aerosol optical depth (AOD) and its spectral dependence in the 873–2314 nm spectral range from COCCON measurements at the subtropical high-mountain Izaña Observatory (IZO, Tenerife, Spain), which were coincidentally carried out with standard sun photometry within the Aerosol Robotic Network (AERONET) in the 3-year period from December 2019 to September 2022. The co-located AERONET–COCCON database was used to cross-validate these two independent techniques in the common spectral range (870–1640 nm), demonstrating an excellent agreement at the near-coincident spectral bands (mean AOD differences limited to 0.005, standard deviations up to 0.021 and Pearson regression coefficients up to 0.97). This indicates that the low-resolution COCCON instruments are suitable for detecting the aerosol broadband signal contained in the IR spectra in addition to the retrieval of precise trace gas concentrations, provided a robust calibration procedure (Langley-based or absolute calibration procedures) is used to compensate for the optical degradation of the external system (∌ 0.72 % per month). The study also assesses the capability of the EM27/SUN to simultaneously infer aerosols and trace gases and relate their common emission sources in two case study events: a volcanic plume from the La Palma eruption in 2021 and a nearby forest fire in Tenerife in 2022. Overall, our results demonstrate the potential of the portable low-resolution COCCON instruments to enhance the multi-parameter capability of the FTIR technique for atmospheric monitoring

    Prevalence of hepatitis B and C markers in high-risk hospitalised patients in Crete: a five-year observational study

    Get PDF
    BACKGROUND: So far the prevalence of viral hepatitis infection in hospitalized patients has not been extensively studied. Therefore we conducted the present five-year observational study to evaluate the prevalence of HBV and HCV infection in high-risk hospitalized patients of Crete, the largest Greek island, Due to the homogeneous population, epidemiological studies can be accurately done. METHODS: The study was carried out in two out of four District General Hospitals, and in the University Hospital of the island. Markers for HBV and HCV were studied and statistically evaluated according to age, sex and geographical area, in a well-defined hospitalized population. RESULTS: The total prevalence of HBsAg and anti-HCV in the three prefectures during the five-year study is 2.66% and 4.75% respectively. Overall the relative risks were higher in males than females for each hepatitis marker (p < 0.001). Higher prevalence of HBcAb was found in the 41–60 years age group for both sexes (males 36.17%, females 27.38%). Peak HBsAg prevalence was found in the age group of 21–40 and 41–60 years for males (5.4%) and females (3.09%) respectively. Anti-HCV prevalence increases with age reaching the highest prevalence in the age group of 41–60 years for males (7.19%) and in the 61–90 years age group for females (7.16%). For both sexes significant differences between the three locations were identified. For HBsAg a higher prevalence in Heraklion (3.96%) compared to Chania (2.30%, males: p < 0.0001, females: p < 0.05) and Rethymnon (1.45%, males: p < 0.01, females: p < 0.0001) was detected. For HCV a significantly higher prevalence in Heraklion (6.54%) compared to Chania (2.39%, males: p < 0.001, females: p < 0.001) but not in Rethymnon (5.15%, NS). A lower prevalence rate of HBcAb in Heraklion compared to Chania (20.07% versus 23.05%, males: p < 0.001, females: p < 0.001) was found. CONCLUSIONS: These results were possibly overestimated, but nevertheless reflect the situation of the general population within the island as shown by our previous publications in other study groups. Moreover they contribute to the mapping of viral hepatitis prevalence in a geographical area of Southern Europe and may be helpful in planning public health interventional strategies

    Drivers of future alien species impacts: An expert‐based assessment

    Get PDF
    Understanding the likely future impacts of biological invasions is crucial yet highly challenging given the multiple relevant environmental, socio‐economic and societal contexts and drivers. In the absence of quantitative models, methods based on expert knowledge are the best option for assessing future invasion trajectories. Here, we present an expert assessment of the drivers of potential alien species impacts under contrasting scenarios and socioecological contexts through the mid‐21st century. Based on responses from 36 experts in biological invasions, moderate (20%–30%) increases in invasions, compared to the current conditions, are expected to cause major impacts on biodiversity in most socioecological contexts. Three main drivers of biological invasions—transport, climate change and socio‐economic change—were predicted to significantly affect future impacts of alien species on biodiversity even under a best‐case scenario. Other drivers (e.g. human demography and migration in tropical and subtropical regions) were also of high importance in specific global contexts (e.g. for individual taxonomic groups or biomes). We show that some best‐case scenarios can substantially reduce potential future impacts of biological invasions. However, rapid and comprehensive actions are necessary to use this potential and achieve the goals of the Post‐2020 Framework of the Convention on Biological Diversity
    • 

    corecore