432 research outputs found
FRW cosmologies between chaos and integrability
A recent paper by Castagnino, Giacomini and Lara concludes that there is no
chaos in a conformally coupled closed Friedmann-Robertson-Walker universe,
which is in apparent contradiction with previous works. We point out that
although nonchaotic the quoted system is nonintegrable.Comment: Revtex, 2 pages, no figure
Stochastic Model for Power Grid Dynamics
We introduce a stochastic model that describes the quasi-static dynamics of
an electric transmission network under perturbations introduced by random load
fluctuations, random removing of system components from service, random repair
times for the failed components, and random response times to implement optimal
system corrections for removing line overloads in a damaged or stressed
transmission network. We use a linear approximation to the network flow
equations and apply linear programming techniques that optimize the dispatching
of generators and loads in order to eliminate the network overloads associated
with a damaged system. We also provide a simple model for the operator's
response to various contingency events that is not always optimal due to either
failure of the state estimation system or due to the incorrect subjective
assessment of the severity associated with these events. This further allows us
to use a game theoretic framework for casting the optimization of the
operator's response into the choice of the optimal strategy which minimizes the
operating cost. We use a simple strategy space which is the degree of tolerance
to line overloads and which is an automatic control (optimization) parameter
that can be adjusted to trade off automatic load shed without propagating
cascades versus reduced load shed and an increased risk of propagating
cascades. The tolerance parameter is chosen to describes a smooth transition
from a risk averse to a risk taken strategy...Comment: framework for a system-level analysis of the power grid from the
viewpoint of complex network
Dynamical and spectral properties of complex networks
Dynamical properties of complex networks are related to the spectral
properties of the Laplacian matrix that describes the pattern of connectivity
of the network. In particular we compute the synchronization time for different
types of networks and different dynamics. We show that the main dependence of
the synchronization time is on the smallest nonzero eigenvalue of the Laplacian
matrix, in contrast to other proposals in terms of the spectrum of the
adjacency matrix. Then, this topological property becomes the most relevant for
the dynamics.Comment: 14 pages, 5 figures, to be published in New Journal of Physic
Enhance synchronizability via age-based coupling
In this brief report, we study the synchronization of growing scale-free
networks. An asymmetrical age-based coupling method is proposed with only one
free parameter . Although the coupling matrix is asymmetric, our
coupling method could guarantee that all the eigenvalues are non-negative
reals. The eigneratio R will approach to 1 in the large limit of .Comment: 3 pages, 1 figur
Universality in active chaos
Many examples of chemical and biological processes take place in large-scale
environmental flows. Such flows generate filamental patterns which are often
fractal due to the presence of chaos in the underlying advection dynamics. In
such processes, hydrodynamical stirring strongly couples into the reactivity of
the advected species and might thus make the traditional treatment of the
problem through partial differential equations difficult. Here we present a
simple approach for the activity in in-homogeneously stirred flows. We show
that the fractal patterns serving as skeletons and catalysts lead to a rate
equation with a universal form that is independent of the flow, of the particle
properties, and of the details of the active process. One aspect of the
universality of our appraoch is that it also applies to reactions among
particles of finite size (so-called inertial particles).Comment: 10 page
(Non)Invariance of dynamical quantities for orbit equivalent flows
We study how dynamical quantities such as Lyapunov exponents, metric entropy,
topological pressure, recurrence rates, and dimension-like characteristics
change under a time reparameterization of a dynamical system. These quantities
are shown to either remain invariant, transform according to a multiplicative
factor or transform through a convoluted dependence that may take the form of
an integral over the initial local values. We discuss the significance of these
results for the apparent non-invariance of chaos in general relativity and
explore applications to the synchronization of equilibrium states and the
elimination of expansions
- …