1,898 research outputs found
On the Genus Two Free Energies for Semisimple Frobenius Manifolds
We represent the genus two free energy of an arbitrary semisimple Frobenius
manifold as a sum of contributions associated with dual graphs of certain
stable algebraic curves of genus two plus the so-called "genus two G-function".
Conjecturally the genus two G-function vanishes for a series of important
examples of Frobenius manifolds associated with simple singularities as well as
for -orbifolds with positive Euler characteristics. We explain the
reasons for such Conjecture and prove it in certain particular cases.Comment: 37 pages, 3 figures, V2: the published versio
The Extended Bigraded Toda hierarchy
We generalize the Toda lattice hierarchy by considering N+M dependent
variables. We construct roots and logarithms of the Lax operator which are
uniquely defined operators with coefficients that are -series of
differential polynomials in the dependent variables, and we use them to provide
a Lax pair definition of the extended bigraded Toda hierarchy. Using R-matrix
theory we give the bihamiltonian formulation of this hierarchy and we prove the
existence of a tau function for its solutions. Finally we study the
dispersionless limit and its connection with a class of Frobenius manifolds on
the orbit space of the extended affine Weyl groups of the series.Comment: 32 pages, corrected typo
On the numerical evaluation of algebro-geometric solutions to integrable equations
Physically meaningful periodic solutions to certain integrable partial
differential equations are given in terms of multi-dimensional theta functions
associated to real Riemann surfaces. Typical analytical problems in the
numerical evaluation of these solutions are studied. In the case of
hyperelliptic surfaces efficient algorithms exist even for almost degenerate
surfaces. This allows the numerical study of solitonic limits. For general real
Riemann surfaces, the choice of a homology basis adapted to the
anti-holomorphic involution is important for a convenient formulation of the
solutions and smoothness conditions. Since existing algorithms for algebraic
curves produce a homology basis not related to automorphisms of the curve, we
study symplectic transformations to an adapted basis and give explicit formulae
for M-curves. As examples we discuss solutions of the Davey-Stewartson and the
multi-component nonlinear Schr\"odinger equations.Comment: 29 pages, 20 figure
On the algebraic structures connected with the linear Poisson brackets of hydrodynamics type
The generalized form of the Kac formula for Verma modules associated with
linear brackets of hydrodynamics type is proposed. Second cohomology groups of
the generalized Virasoro algebras are calculated. Connection of the central
extensions with the problem of quntization of hydrodynamics brackets is
demonstrated
Lattice Gauge Fields Topology Uncovered by Quaternionic sigma-model Embedding
We investigate SU(2) gauge fields topology using new approach, which exploits
the well known connection between SU(2) gauge theory and quaternionic
projective sigma-models and allows to formulate the topological charge density
entirely in terms of sigma-model fields. The method is studied in details and
for thermalized vacuum configurations is shown to be compatible with
overlap-based definition. We confirm that the topological charge is distributed
in localized four dimensional regions which, however, are not compatible with
instantons. Topological density bulk distribution is investigated at different
lattice spacings and is shown to possess some universal properties.Comment: revtex4, 19 pages (24 ps figures included); replaced to match the
published version, to appear in PRD; minor changes, references adde
Curvature function and coarse graining
A classic theorem in the theory of connections on principal fiber bundles
states that the evaluation of all holonomy functions gives enough information
to characterize the bundle structure (among those sharing the same structure
group and base manifold) and the connection up to a bundle equivalence map.
This result and other important properties of holonomy functions has encouraged
their use as the primary ingredient for the construction of families of quantum
gauge theories. However, in these applications often the set of holonomy
functions used is a discrete proper subset of the set of holonomy functions
needed for the characterization theorem to hold. We show that the evaluation of
a discrete set of holonomy functions does not characterize the bundle and does
not constrain the connection modulo gauge appropriately.
We exhibit a discrete set of functions of the connection and prove that in
the abelian case their evaluation characterizes the bundle structure (up to
equivalence), and constrains the connection modulo gauge up to "local details"
ignored when working at a given scale. The main ingredient is the Lie algebra
valued curvature function defined below. It covers the holonomy
function in the sense that .Comment: 34 page
Topological Phenomena in the Real Periodic Sine-Gordon Theory
The set of real finite-gap Sine-Gordon solutions corresponding to a fixed
spectral curve consists of several connected components. A simple explicit
description of these components obtained by the authors recently is used to
study the consequences of this property. In particular this description allows
to calculate the topological charge of solutions (the averaging of the
-derivative of the potential) and to show that the averaging of other
standard conservation laws is the same for all components.Comment: LaTeX, 18 pages, 3 figure
- …