Abstract

We generalize the Toda lattice hierarchy by considering N+M dependent variables. We construct roots and logarithms of the Lax operator which are uniquely defined operators with coefficients that are ϵ\epsilon-series of differential polynomials in the dependent variables, and we use them to provide a Lax pair definition of the extended bigraded Toda hierarchy. Using R-matrix theory we give the bihamiltonian formulation of this hierarchy and we prove the existence of a tau function for its solutions. Finally we study the dispersionless limit and its connection with a class of Frobenius manifolds on the orbit space of the extended affine Weyl groups of the AA series.Comment: 32 pages, corrected typo

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 11/12/2019