105 research outputs found

    Hypospadias

    Get PDF
    Objective. The great possibility of variations in the clinical presentation of hypospadia, makes its therapy challenging. This has led to the development of a number of techniques for hypospadia repair. This article assesses past and present concepts and operative techniques with the aim of broadening our understanding of this malformation. Materials and Methods. The article not only reviews hypospadia in general with its development and clinical presentation as well as historical and current concepts in hypospadiologie on the basis of available literature, but it is also based on our own clinical experience in the repair of this malformation. Results and Conclusion. The fact that there are great variations in the presentation and extent of malformations existent makes every hypospadia individual and a proposal of a universal comprehensive algorithm for hypospadia repair difficult. The Snodgrass technique has found wide popularity for the repair of distal hypospadias. As far as proximal hypospadias are concerned, their repair is more challenging because it not only involves urethroplasty, but can also, in some cases, fulfil the dimensions of a complex genital reconstruction. Due to the development of modern operating materials and an improvement in current surgical techniques, there has been a significant decrease in the complication rates. Nonetheless, there still is room and, therefore, need for further improvement in this field

    Dissecting herpes simplex virus 1-induced host shutoff at the RNA level

    Get PDF
    Herpes simplex virus 1 (HSV-1) induces a profound host shut-off during lytic infection. The virion host shut-off (vhs) protein plays a key role in this process by efficiently cleaving host and viral mRNAs. Furthermore, the onset of viral DNA replication is accompanied by a rapid decline in host transcriptional activity. To dissect relative contributions of both mechanisms and elucidate gene-specific host transcriptional responses throughout the first 8h of lytic HSV-1 infection, we employed RNA-seq of total, newly transcribed (4sU-labelled) and chromatin-associated RNA in wild-type (WT) and Δvhs infection of primary human fibroblasts. Following virus entry, vhs activity rapidly plateaued at an elimination rate of around 30% of cellular mRNAs per hour until 8h p.i. In parallel, host transcriptional activity dropped to 10-20%. While the combined effects of both phenomena dominated infection-induced changes in total RNA, extensive gene-specific transcriptional regulation was observable in chromatin-associated RNA and was surprisingly concordant between WT and Δvhs infection. Both induced strong transcriptional up-regulation of a small subset of genes that were poorly expressed prior to infection but already primed by H3K4me3 histone marks at their promoters. Most interestingly, analysis of chromatin-associated RNA revealed vhs-nuclease-activity-dependent transcriptional down-regulation of at least 150 cellular genes, in particular of many integrin adhesome and extracellular matrix components. This was accompanied by a vhs-dependent reduction in protein levels by 8h p.i. for many of these genes. In summary, our study provides a comprehensive picture of the molecular mechanisms that govern cellular RNA metabolism during the first 8h of lytic HSV-1 infection. IMPORTANCE: The HSV-1 virion host shut-off (vhs) protein efficiently cleaves both host and viral mRNAs in a translation-dependent manner. In this study, we model and quantify changes in vhs activity as well as virus-induced global loss of host transcriptional activity during productive HSV-1 infection. In general, HSV-1-induced alterations in total RNA levels were dominated by these two global effects. In contrast, chromatin-associated RNA depicted gene-specific transcriptional changes. This revealed highly concordant transcriptional changes in WT and Δvhs infection, confirmed DUX4 as a key transcriptional regulator in HSV-1 infection and depicted vhs-dependent, transcriptional down-regulation of the integrin adhesome and extracellular matrix components. The latter explained seemingly gene-specific effects previously attributed to vhs-mediated mRNA degradation and resulted in a concordant loss in protein levels by 8h p.i. for many of the respective genes

    Free Brick1 Is a Trimeric Precursor in the Assembly of a Functional Wave Complex

    Get PDF
    Background: The Wave complex activates the Arp2/3 complex, inducing actin polymerization in lamellipodia and membrane ruffles. The Wave complex is composed of five subunits, the smallest of which, Brick1/Hspc300 (Brk1), is the least characterized. We previously reported that, unlike the other subunits, Brk1 also exists as a free form. Principal Findings: Here we report that this free form of Brk1 is composed of homotrimers. Using a novel assay in which purified free Brk1 is electroporated into HeLa cells, we were able to follow its biochemical fate in cells and to show that free Brk1 becomes incorporated into the Wave complex. Importantly, incorporation of free Brk1 into the Wave complex was blocked upon inhibition of protein synthesis and incorporated Brk1 was found to associate preferentially with neosynthesized subunits. Brk1 depleted HeLa cells were found to bleb, as were Nap1, Wave2 or ARPC2 depleted cells, suggesting that this blebbing phenotype of Brk1 depleted cells is due to an impairment of the Wave complex function rather than a specific function of free Brk1. Blebs of Brk1 depleted cells were emitted at sites where lamellipodia and membrane ruffles were normally emitted. In Brk1 depleted cells, the electroporation of free Brk1 was sufficient to restore Wave complex assembly and to rescue the blebbing phenotype. Conclusion: Together these results establish that the free form of Brk1 is an essential precursor in the assembly of

    High-Resolution X-Ray Structure of the Trimeric Scar/WAVE-Complex Precursor Brk1

    Get PDF
    The Scar/WAVE-complex links upstream Rho-GTPase signaling to the activation of the conserved Arp2/3-complex. Scar/WAVE-induced and Arp2/3-complex-mediated actin nucleation is crucial for actin assembly in protruding lamellipodia to drive cell migration. The heteropentameric Scar/WAVE-complex is composed of Scar/WAVE, Abi, Nap, Pir and a small polypeptide Brk1/HSPC300, and recent work suggested that free Brk1 serves as a homooligomeric precursor in the assembly of this complex. Here we characterized the Brk1 trimer from Dictyostelium by analytical ultracentrifugation and gelfiltration. We show for the first time its dissociation at concentrations in the nanomolar range as well as an exchange of subunits within different DdBrk1 containing complexes. Moreover, we determined the three-dimensional structure of DdBrk1 at 1.5 Å resolution by X-ray crystallography. Three chains of DdBrk1 are associated with each other forming a parallel triple coiled-coil bundle. Notably, this structure is highly similar to the heterotrimeric α-helical bundle of HSPC300/WAVE1/Abi2 within the human Scar/WAVE-complex. This finding, together with the fact that Brk1 is collectively sandwiched by the remaining subunits and also constitutes the main subunit connecting the triple-coil domain of the HSPC300/WAVE1/Abi2/ heterotrimer to Sra1(Pir1), implies a critical function of this subunit in the assembly process of the entire Scar/WAVE-complex

    A Genome-Wide Association Study Identifies Variants Underlying the Arabidopsis thaliana Shade Avoidance Response

    Get PDF
    Shade avoidance is an ecologically and molecularly well-understood set of plant developmental responses that occur when the ratio of red to far-red light (R∶FR) is reduced as a result of foliar shade. Here, a genome-wide association study (GWAS) in Arabidopsis thaliana was used to identify variants underlying one of these responses: increased hypocotyl elongation. Four hypocotyl phenotypes were included in the study, including height in high R∶FR conditions (simulated sun), height in low R∶FR conditions (simulated shade), and two different indices of the response of height to low R∶FR. GWAS results showed that variation in these traits is controlled by many loci of small to moderate effect. A known PHYC variant contributing to hypocotyl height variation was identified and lists of significantly associated genes were enriched in a priori candidates, suggesting that this GWAS was capable of generating meaningful results. Using metadata such as expression data, GO terms, and other annotation, we were also able to identify variants in candidate de novo genes. Patterns of significance among our four phenotypes allowed us to categorize associations into three groups: those that affected hypocotyl height without influencing shade avoidance, those that affected shade avoidance in a height-dependent fashion, and those that exerted specific control over shade avoidance. This grouping allowed for the development of explicit hypotheses about the genetics underlying shade avoidance variation. Additionally, the response to shade did not exhibit any marked geographic distribution, suggesting that variation in low R∶FR–induced hypocotyl elongation may represent a response to local conditions

    Classification and function of small open reading frames

    Get PDF
    Small open reading frames (smORFs) of 100 codons or fewer are usually - if arbitrarily - excluded from proteome annotations. Despite this, the genomes of many metazoans, including humans, contain millions of smORFs, some of which fulfil key physiological functions. Recently, the transcriptome of Drosophila melanogaster was shown to contain thousands of smORFs of different classes that actively undergo translation, which produces peptides of mostly unknown function. Here, we present a comprehensive analysis of smORFs in flies, mice and humans. We propose the existence of several functional classes of smORFs, ranging from inert DNA sequences to transcribed and translated cis-regulators of translation and peptides with a propensity to function as regulators of membrane-associated proteins, or as components of ancient protein complexes in the cytoplasm. We suggest that the different smORF classes could represent steps in gene, peptide and protein evolution. Our analysis introduces a distinction between different peptide-coding classes of smORFs in animal genomes, and highlights the role of model organisms for the study of small peptide biology in the context of development, physiology and human disease
    corecore