7 research outputs found
The assessment of population exposure to chlorination by-products: a study on the influence of the water distribution system
<p>Abstract</p> <p>Background</p> <p>The relationship between chlorination by-products (CBPs) in drinking water and human health outcomes has been investigated in many epidemiological studies. In these studies, population exposure assessment to CBPs in drinking water is generally based on available CBP data (e.g., from regulatory monitoring, sampling campaigns specific to study area). Since trihalomethanes (THMs) and haloacetic acids (HAAs) are the most documented CBP classes in drinking water, they are generally used as indicators of CBP exposure.</p> <p>Methods</p> <p>In this paper, different approaches to spatially assign available THM and HAA concentrations in drinking water for population exposure assessment purposes are investigated. Six approaches integrating different considerations for spatial variability of CBP occurrence within different distribution systems are compared. For this purpose, a robust CBP database (i.e., high number of sampling locations selected according to system characteristics) corresponding to nine distribution systems was generated.</p> <p>Results and conclusion</p> <p>The results demonstrate the high impact of the structure of the distribution system (e.g., presence of intermediary water infrastructures such as re-chlorination stations or reservoirs) and the spatial variability of CBPs in the assigned levels for exposure assessment. Recommendations for improving the exposure assessment to CBPs in epidemiological studies using available CBP data from water utilities are also presented.</p
Vascular and blood-brain barrier-related changes underlie stress responses and resilience in female mice and depression in human tissue
Prevalence, symptoms, and treatment of depression suggest that major depressive disorders (MDD) present sex differences. Social stress-induced neurovascular pathology is associated with depressive symptoms in male mice; however, this association is unclear in females. Here, we report that chronic social and subchronic variable stress promotes blood-brain barrier (BBB) alterations in mood-related brain regions of female mice. Targeted disruption of the BBB in the female prefrontal cortex (PFC) induces anxiety- and depression-like behaviours. By comparing the endothelium cell-specific transcriptomic profiling of the mouse male and female PFC, we identify several pathways and genes involved in maladaptive stress responses and resilience to stress. Furthermore, we confirm that the BBB in the PFC of stressed female mice is leaky. Then, we identify circulating vascular biomarkers of chronic stress, such as soluble E-selectin. Similar changes in circulating soluble E-selectin, BBB gene expression and morphology can be found in blood serum and postmortem brain samples from women diagnosed with MDD. Altogether, we propose that BBB dysfunction plays an important role in modulating stress responses in female mice and possibly MDD
Identifying Fenton-Reacted Trimethoprim Transformation Products Using Differential Mobility Spectrometry
A transformation
product of trimethoprim, a contaminant of emerging
concern in the environment, is generated using an electro-assisted
Fenton reaction and analyzed using differential mobility spectrometry
(DMS) in combination with MS/MS techniques and quantum chemical calculations
to develop a rapid method for identification. DMS is used as a prefilter
to separate positional isomers prior to subsequent identification
by mass spectrometric analyses. Collision induced dissociation of
each DMS separated species is used to reveal fragmentation patterns
that can be correlated to specific isomer structures. Analysis of
the experimental data and supporting quantum chemical calculations
show that methylene-hydroxylated and methoxy-containing phenyl ring
hydroxylated transformation products are observed. The proposed methodology
outlines a high-throughput technique to determine transformation products
of small molecules accurately, in a short time and requiring minimal
sample concentrations (<25 ng/mL)
Spatial and seasonal variability of tap water disinfection by-products within distribution pipe networks
Gradually-changing shocks associated with potable water quality deficiencies are anticipated for urban drinking-water distribution systems (UDWDS). The impact of structural UDWDS features such as, the number of pipe leaking incidences on the formation of water trihalomethanes (THM) at the geocoded household level has never been studied before. The objectives were to: (i) characterize the distribution of water THM concentrations in households from two district-metered areas (DMAs) with contrasting UDWDS characteristics sampled in two seasons (summer and winter), and (ii) assess the within- and between-household, spatial variability of water THM accounting for UDWDS characteristics (household distance from chlorination tank and service pipe leaking incidences). A total of 383 tap water samples were collected from 193 households located in two DMAs within the UDWDS of Nicosia city, Cyprus, and analyzed for the four THM species. The higher intraclass correlation coefficient (ICC) values for water tribromomethane (TBM) (0.75) followed by trichloromethane (0.42) suggested that the two DMAs differed with respect to these analytes. On the other hand, the low ICC values for total THM levels between the two DMAs suggested a large variance between households. The effect of households nested under each DMA remained significant (p < 0.05) for TBM (not for the rest of the THM species) in the multivariate mixed-effect models, even after inclusion of pipe network characteristics. Our results could find use by water utilities in overcoming techno-economic difficulties associated with the large spatiotemporal variability of THM, while accounting for the influence of UDWDS features at points of water use