3,063 research outputs found

    Inverse energy cascade in ocean macroscopic turbulence: Kolmogorov self-similarity in surface drifter observations and Richardson-Obhukov constant

    Full text link
    We combine two point velocity and position data from surface drifter observations in the Benguela upwelling region off the coast of Namibia. The compensated third order longitudinal velocity structure function ⟨Δuℓ3⟩/s\left\langle{\Delta u_{\ell}^{\rm 3}}\right\rangle/s shows a positive plateau for inertial separations ss roughly between 9 km9~\rm{km} and 120 km120~\rm{km} revealing an inverse energy cascade with energy transfer rate ε≃1.2±0.1⋅10−7m3/s2\varepsilon\simeq 1.2 \pm 0.1 \cdot 10^{-7} m^3/s^2. Deviations from Gaussianity of the corresponding probability distribution P(Δuℓ∣s)P(\Delta u_{\ell} |s) of two-point velocity increments Δuℓ\Delta u_{\ell} for given pair separation ss show up in the nth^{th} antisymetric structure functions S−(n)(r)=∫un(P(u)−P(−u)duS_{-}^{(n)}(r)=\int u^n(P(u)-P(-u)d u, which scale in agreement with Kolmogorov's prediction, S−(n)(r)∼r(n/3)S_{-}^{(n)}(r)\sim r^{(n/3)}, for n=2,4,6n=2,4,6. The combination of ε\varepsilon with Richardson dispersion ⟨s2(t)⟩=gεt3\left\langle s^2(t)\right\rangle=g\varepsilon t^3, where ⟨s2(t)⟩\left\langle s^2(t)\right\rangle is mean squared pair separation at time t t, reveals a Richardson-Obhukov constant of g≃0.11±0.03g\simeq 0.11\pm 0.03.Comment: 6 pages, 5 figure

    Beyond the random phase approximation in the Singwi-Sj\"olander theory of the half-filled Landau level

    Full text link
    We study the ν=1/2\nu=1/2 Chern-Simons system and consider a self-consistent field theory of the Singwi-Sj\"olander type which goes beyond the random phase approximation (RPA). By considering the Heisenberg equation of motion for the longitudinal momentum operator, we are able to show that the zero-frequency density-density response function vanishes linearly in long wavelength limit independent of any approximation. From this analysis, we derive a consistency condition for a decoupling of the equal time density-density and density-momentum correlation functions. By using the Heisenberg equation of motion of the Wigner distribution function with a decoupling of the correlation functions which respects this consistency condition, we calculate the response functions of the ν=1/2\nu=1/2 system. In our scheme, we get a density-density response function which vanishes linearly in the Coulomb case for zero-frequency in the long wavelength limit. Furthermore, we derive the compressibility, and the Landau energy as well as the Coulomb energy. These energies are in better agreement to numerical and exact results, respectively, than the energies calculated in the RPA.Comment: 9 Revtex pages, 4 eps figures, typos correcte

    Hall field induced magnetoresistance oscillations of a two-dimensional electron system

    Full text link
    We develop a model of the nonlinear response to a DC electrical current of a two dimensional electron system(2DES) placed on a magnetic field. Based on the exact solution of the Schroedinger equation in arbitrarily strong electric and magnetic fields, and separating the relative and guiding center coordinates, a Kubo-like formula for the current is worked out as a response to the impurity scattering. Self-consistent expressions determine the longitudinal and Hall components of the electric field in terms of the DC current. The differential resistivity displays strong Hall field-induced oscillations, in agreement with the main features of the phenomenon observed in recent experiments.Comment: 11 pages, 5 figure

    Magnetic field induced 3D to 1D crossover in type II superconductors

    Full text link
    We review and analyze magnetization and specific heat investigations on type-II superconductors which uncover remarkable evidence for the magnetic field induced fnite size effect and the associated 3D to 1D crossover which enhances thermal fluctuations.Comment: 26 pages, 19 figure

    Lindemann Parameters for solid Membranes focused on Carbon Nanotubes

    Full text link
    Temperature fluctuations in the normal direction of planar crystals such as graphene are quite violent and may be expected to influence strongly their melting properties. In particular, they will modify the Lindemann melting criterium. We calculate this modification in a self-consistent Born approximation. The result is applied to graphene and its wrapped version represented by single-walled carbon nanotubes (SWNTs). It is found that the out-of-plane fluctuations dominate over the in-plane fluctuations. This makes strong restrictions to possible Lindemann parameters. Astonishing we find that these large out-of-plane fluctuations have only a small influence upon the melting temperature.Comment: 6 pages, 1 figure, typos corrected, version published in PR

    Guidance for laboratories performing molecular pathology for cancer patients

    Get PDF
    Molecular testing is becoming an important part of the diagnosis of any patient with cancer. The challenge to laboratories is to meet this need, using reliable methods and processes to ensure that patients receive a timely and accurate report on which their treatment will be based. The aim of this paper is to provide minimum requirements for the management of molecular pathology laboratories. This general guidance should be augmented by the specific guidance available for different tumour types and tests. Preanalytical considerations are important, and careful consideration of the way in which specimens are obtained and reach the laboratory is necessary. Sample receipt and handling follow standard operating procedures, but some alterations may be necessary if molecular testing is to be performed, for instance to control tissue fixation. DNA and RNA extraction can be standardised and should be checked for quality and quantity of output on a regular basis. The choice of analytical method(s) depends on clinical requirements, desired turnaround time, and expertise available. Internal quality control, regular internal audit of the whole testing process, laboratory accreditation, and continual participation in external quality assessment schemes are prerequisites for delivery of a reliable service. A molecular pathology report should accurately convey the information the clinician needs to treat the patient with sufficient information to allow for correct interpretation of the result. Molecular pathology is developing rapidly, and further detailed evidence-based recommendations are required for many of the topics covered here

    Characterization of physical properties of a coastal upwelling filament with evidence of enhanced submesoscale activity and transition from balanced to unbalanced motions in the Benguela upwelling region

    Get PDF
    We combine high-resolution in situ data (acoustic Doppler current profiler (ADCP), Scanfish, and surface drifters) and remote sensing to investigate the physical characteristics of a major filament observed in the Benguela upwelling region. The 30–50 km wide and about 400 km long filament persisted for at least 40 d. Mixed-layer depths were less than 40 m in the filament and over 60 m outside of it. Observations of the Rossby number Ro from the various platforms provide the spatial distribution of Ro for different resolutions. Remote sensing focuses on geostrophic motions of the region related to the mesoscale eddies that drive the filament formation and thereby reveals |Ro|&lt;0.1. Ship-based measurements in the surface mixed layer reveal 0.5&lt;|Ro|&lt;1, indicating the presence of unbalanced, ageostrophic motions. Time series of Ro from triplets of surface drifters trapped within the filament confirm these relatively large Ro values and show a high variability along the filament. A scale-dependent analysis of Ro, which relies on the second-order velocity structure function, was applied to the latter drifter group and to another drifter group released in the upwelling zone. The two releases explored the area nearly distinctly and simultaneously and reveal that at small scales (&lt;15 km) Ro values are twice as large in the filament in comparison to its environment with Ro&gt;1 for scales smaller than ∼500 m. This suggests that filaments are hotspots of ageostrophic dynamics, pointing to the presence of a forward energy cascade. The different dynamics indicated by our Ro analysis are confirmed by horizontal kinetic energy wavenumber spectra, which exhibit a power law k−α with α∼5/3 for wavelengths 2π/k smaller than a transition scale of 15 km, supporting significant submesoscale energy at scales smaller than the first baroclinic Rossby radius (Ro1∼30 km). The detected transition scale is smaller than those found in regions with less mesoscale eddy energy, consistent with previous studies. We found evidence for the processes which drive the energy transfer to turbulent scales. Positive Rossby numbers (1) associated with cyclonic motion inhibit the occurrence of positive Ertel potential vorticity (EPV) and stabilize the water column. However, where the baroclinic component of EPV dominates, submesoscale instability analysis suggests that mostly gravitational instabilities occur and that symmetric instabilities may be important at the filament edges.</p
    • …
    corecore