655 research outputs found

    SWI/SNF regulates a transcriptional programme that induces senescence to prevent liver cancer

    Get PDF
    Oncogene-induced senescence (OIS) is a potent tumour suppressor mechanism. To identify senescence regulators relevant to cancer, we screened an shRNA library targeting genes deleted in hepatocellular carcinoma (HCC). Here, we describe how knockdown of the SWI/SNF component ARID1B prevents OIS and cooperates with RAS to induce liver tumours. ARID1B controls p16INK4a and p21CIP1a transcription but also regulates DNA damage, oxidative stress and p53 induction, suggesting that SWI/SNF uses additional mechanisms to regulate senescence. To systematically identify SWI/SNF targets regulating senescence, we carried out a focused shRNA screen. We discovered several new senescence regulators including ENTPD7, an enzyme that hydrolyses nucleotides. ENTPD7 affects oxidative stress, DNA damage and senescence. Importantly, expression of ENTPD7 or inhibition of nucleotide synthesis in ARID1B-depleted cells results in re-establishment of senescence. Our results identify novel mechanisms by which epigenetic regulators can affect tumor progression and suggest that pro-senescence therapies could be employed against SWI/SNF-mutated cancers

    A Cholesterol-Based Allostery Model of T Cell Receptor Phosphorylation

    Get PDF
    Signaling through the T cell receptor (TCR) controls adaptive immune responses. Antigen binding to TCRαβ transmits signals through the plasma membrane to induce phosphorylation of the CD3 cytoplasmic tails by incompletely understood mechanisms. Here we show that cholesterol bound to the TCRβ transmembrane region keeps the TCR in a resting, inactive conformation that cannot be phosphorylated by active kinases. Only TCRs that spontaneously detached from cholesterol could switch to the active conformation (termed primed TCRs) and then be phosphorylated. Indeed, by modulating cholesterol binding genetically or enzymatically, we could switch the TCR between the resting and primed states. The active conformation was stabilized by binding to peptide-MHC, which thus controlled TCR signaling. These data are explained by a model of reciprocal allosteric regulation of TCR phosphorylation by cholesterol and ligand binding. Our results provide both a molecular mechanism and a conceptual framework for how lipid-receptor interactions regulate signal transduction. The TCR can adopt an inactive, resting or an active, primed state. Schamel and colleagues show that the TCR is in equilibrium between these states. Peptide-MHC binding stabilizes the primed state that can be phosphorylated. Cholesterol binding stabilizes the resting state and thereby tunes the TCR activation threshold.</p

    Screening of winery and olive mill wastes for lignocellulolytic enzyme production from Aspergillus species by solid-state fermentation

    Get PDF
    Wastes from olive oil and wine industries (as exhausted grape marc, vineshoot trimmings, two-phase olive mill waste, vinasses, and olive mill wastewater) were evaluated for lignocellulolytic enzyme production (as endocellulases, endoxylanases, and feruloyl esterases) by solid-state fermentation (SSF) with Aspergillus niger, Aspergillus ibericus, and Aspergillus uvarum. To study the effect of different solid medium composition and time in enzyme production, a PlackettBurman experimental design was used. Variables that had a higher positive effect in lignocellulolytic enzyme production were urea, time, and exhausted grape marc. The maximum values of enzymatic activity per unit of substrate dry mass were found with A. niger for feruloyl esterase. Enzymatic extracts from SSF with A. niger achieved maximum feruloyl esterase activity (89.53 U/g) and endoxylanase activity (3.06 U/g) and with A. uvarum for endocellulase activity (6.77 U/g). The enzyme cocktails obtained in the SSF extracts may have applications in biorefinery industries.Jose Manuel Salgado is grateful for the postdoctoral fellowship (EX-2010-0402) of the Education Ministry of Spanish Government. Luis Abrunhosa was supported by the grant SFRH/BPD/43922/2008 from Fundacao para a Ciencia e Tecnologia-FCT, Portugal

    Research into the effect Of SGLT2 inhibition on left ventricular remodelling in patients with heart failure and diabetes mellitus (REFORM) trial rationale and design

    Get PDF
    Background Heart failure (HF) and diabetes (DM) are a lethal combination. The current armamentarium of anti-diabetic agents has been shown to be less efficacious and sometimes even harmful in diabetic patients with concomitant cardiovascular disease, especially HF. Sodium glucose linked co-transporter type 2 (SGLT2) inhibitors are a new class of anti-diabetic agent that has shown potentially beneficial cardiovascular effects such as pre-load and after load reduction through osmotic diuresis, blood pressure reduction, reduced arterial stiffness and weight loss. This has been supported by the recently published EMPA-REG trial which showed a striking 38 and 35 % reduction in cardiovascular death and HF hospitalisation respectively. Methods The REFORM trial is a novel, phase IV randomised, double blind, placebo controlled clinical trial that has been ongoing since March 2015. It is designed specifically to test the safety and efficacy of the SLGT2 inhibitor, dapagliflozin, on diabetic patients with known HF. We utilise cardiac-MRI, cardio-pulmonary exercise testing, body composition analysis and other tests to quantify the cardiovascular and systemic effects of dapagliflozin 10 mg once daily against standard of care over a 1 year observation period. The primary outcome is to detect the change in left ventricular (LV) end systolic and LV end diastolic volumes. The secondary outcome measures include LV ejection fraction, LV mass index, exercise tolerance, fluid status, quality of life measures and others. Conclusions This trial will be able to determine if SGLT2 inhibitor therapy produces potentially beneficial effects in patients with DM and HF, thereby replacing current medications as the drug of choice when treating patients with both DM and HF

    Harnessing the potential of ligninolytic enzymes for lignocellulosic biomass pretreatment

    Get PDF
    Abundant lignocellulosic biomass from various industries provides a great potential feedstock for the production of value-added products such as biofuel, animal feed, and paper pulping. However, low yield of sugar obtained from lignocellulosic hydrolysate is usually due to the presence of lignin that acts as a protective barrier for cellulose and thus restricts the accessibility of the enzyme to work on the cellulosic component. This review focuses on the significance of biological pretreatment specifically using ligninolytic enzymes as an alternative method apart from the conventional physical and chemical pretreatment. Different modes of biological pretreatment are discussed in this paper which is based on (i) fungal pretreatment where fungi mycelia colonise and directly attack the substrate by releasing ligninolytic enzymes and (ii) enzymatic pretreatment using ligninolytic enzymes to counter the drawbacks of fungal pretreatment. This review also discusses the important factors of biological pretreatment using ligninolytic enzymes such as nature of the lignocellulosic biomass, pH, temperature, presence of mediator, oxygen, and surfactant during the biodelignification process

    Coronary Artery Calcium Score on Standard of Care Oncologic CT Scans for the Prediction of Adverse Cardiovascular Events in Patients With Non-Small Cell Lung Cancer Treated With Concurrent Chemoradiotherapy

    Get PDF
    INTRODUCTION: Chemoradiotherapy (CRT) has been associated with increased incidence of cardiovascular (CV) adverse events (CVAE). Coronary artery calcium scoring (CAC) has shown to predict coronary events beyond the traditional CV risk factors. This study examines whether CAC, measured on standard of care, non-contrast chest CT (NCCT) imaging, predicts the development of CVAE in patients with non-small cell lung cancer (NSCLC) treated with CRT. METHODS: Patients with NSCLC treated with CRT at MD Anderson Cancer Center from 7/2009 until 4/2014 and who had at least one NCCT scan within 6 months from their first CRT were identified. CAC scoring was performed on NCCT scans by an expert cardiologist and a cardiac radiologist following the 2016 SCCT/STR guidelines. CVAE were graded based on the most recent Common Terminology Criteria for Adverse Events (CTCAE) version 5.0. CVAE were also grouped into (i) coronary/vascular events, (ii) arrhythmias, or (iii) heart failure. All CVAE were adjudicated by a board-certified cardiologist. RESULTS: Out of a total of 193 patients, 45% were female and 91% Caucasian. Mean age was 64 ± 9 years and mean BMI 28 ± 6 kg/m DISCUSSION: Cardiovascular adverse events are frequent in patients with NSCLC treated with CRT. CAC calculated on standard of care NCCT can predict the development of CVAEs and specifically coronary/vascular events, as well as OS, independently from other traditional risk factors and radiation mean heart dose

    Circulating microRNAs and Cytokines as Prognostic Biomarkers for Doxorubicin-Induced Cardiac Injury and for Evaluating the Effectiveness of an Exercise Intervention.

    Get PDF
    Purpose: To define a set of biomarkers that can be used to identify patients at high risk of developing late doxorubicin (DOX)-induced cardiac morbidity with the goal of focused monitoring and early interventions. Experimental design: Mice received phosphate buffered saline or DOX 2.5 mg/kg 2x/week for 2 weeks. Blood samples were obtained before and after therapy for quantification of miRNAs (6 and 24 hours), cytokines (24 hours), and troponin (24 hours, 4 and 6 weeks). Cardiac function was evaluated using echocardiography before and 24 hours after therapy. To assess the effectiveness of exercise intervention in preventing DOX-induced cardiotoxicity blood samples were collected from mice treated with DOX or DOX + exercise. Plasma samples from 13 DOX-treated patients with sarcoma were also evaluated before and 24 hours after therapy. Results: Elevations in plasma miRNA-1, miRNA-499 and IL1α, IL1β, and IL6 were seen in DOX-treated mice with decreased ejection fraction and fractional shortening 24 hours after DOX therapy. Troponin levels were not elevated until 4 weeks after therapy. In mice treated with exercise during DOX, there was no elevation in these biomarkers and no change in cardiac function. Elevations in these biomarkers were seen in 12 of 13 patients with sarcoma treated with DOX. Conclusions: These findings define a potential set of biomarkers to identify and predict patients at risk for developing acute and late cardiovascular diseases with the goal of focused monitoring and early intervention. Further studies are needed to confirm the predictive value of these biomarkers in late cardiotoxicity

    Alcohol consumption and risk of heart failure: the Atherosclerosis Risk in Communities Study

    Get PDF
    Alcohol is a known cardiac toxin and heavy consumption can lead to heart failure (HF). However, the relationship between moderate alcohol consumption and risk for HF, in either men or women, remains unclear
    corecore