340 research outputs found

    Photoinduced Fano-resonance of coherent phonons in zinc

    Get PDF
    Utilizing femtosecond optical pump-probe technique, we have studied transient Fano-resonance in zinc. At high excitation levels the Fourier spectrum of the coherent E2g_{2g} phonon exhibits strongly asymmetric line shape, which is well modeled by the Fano function. The Fano parameter (1/Q) was found to be strongly excitation fluence dependent while depending weakly on the initial lattice temperature. We attribute the origin of the Fano-resonance to the coupling of coherent phonon to the electronic continuum, with their transition probabilities strongly renormalized in the vicinity of the photoinduced structural transition.Comment: 5 pages, 3 figures, to be published in Physical Review

    Ultrafast quasiparticle relaxation dynamics in normal metals and heavy fermion materials

    Full text link
    We present a detailed theoretical study of the ultrafast quasiparticle relaxation dynamics observed in normal metals and heavy fermion materials with femtosecond time-resolved optical pump-probe spectroscopy. For normal metals, a nonthermal electron distribution gives rise to a temperature (T) independent electron-phonon relaxation time at low temperatures, in contrast to the T^{-3}-divergent behavior predicted by the two-temperature model. For heavy fermion compounds, we find that the blocking of electron-phonon scattering for heavy electrons within the density-of-states peak near the Fermi energy is crucial to explain the rapid increase of the electron-phonon relaxation time below the Kondo temperature. We propose the hypothesis that the slower Fermi velocity compared to the sound velocity provides a natural blocking mechanism due to energy and momentum conservation laws.Comment: 10 pages, 11 figure

    Dynamics of photoinduced Charge Density Wave-metal phase transition in K0.3MoO3

    Full text link
    We present first systematic studies of the photoinduced phase transition from the ground charge density wave (CDW) state to the normal metallic (M) state in the prototype quasi-1D CDW system K0.3MoO3. Ultrafast non-thermal CDW melting is achieved at the absorbed energy density that corresponds to the electronic energy difference between the metallic and CDW states. The results imply that on the sub-picosecond timescale when melting and subsequent initial recovery of the electronic order takes place the lattice remains unperturbed.Comment: Phys. Rev. Lett., accepted for publicatio

    Photoexcited electron dynamics in Kondo insulators and heavy fermions

    Full text link
    We have studied the photoexcited carrier relaxation dynamics in the Kondo insulator SmB6 and the heavy fermion metal YbAgCu4 as a function of temperature and excitation level. The dynamic response is found to be both strongly temperature dependent and nonlinear. The data are analyzed with a Rothwarf-Taylor bottleneck model, where the dynamics are governed by the presence of a narrow gap in the density of states near the Fermi level. The remarkable agreement with the model suggests that carrier relaxation in a broad class of heavy electron systems (both metals and insulators) is governed by the presence of a (weakly temperature dependent) hybridization gap.Comment: accepted for publication in Physical Review Letter

    Disentanglement of the electronic and lattice parts of the order parameter in a 1D Charge Density Wave system probed by femtosecond spectroscopy

    Full text link
    We report on the high resolution studies of the temperature (T) dependence of the q=0 phonon spectrum in the quasi one-dimensional charge density wave (CDW) compound K0.3MoO3 utilizing time-resolved optical spectroscopy. Numerous modes that appear below Tc show pronounced T-dependences of their amplitudes, frequencies and dampings. Utilizing the time-dependent Ginzburg-Landau theory we show that these modes result from linear coupling of the electronic part of the order parameter to the 2kF phonons, while the (electronic) CDW amplitude mode is overdamped.Comment: 4 pages, 3 figures + supplementary material, accepted for publication in Phys. Rev. Let
    • …
    corecore