41 research outputs found

    Metabolomics Unravel Contrasting Effects of Biodiversity on the Performance of Individual Plant Species

    Get PDF
    In spite of evidence for positive diversity-productivity relationships increasing plant diversity has highly variable effects on the performance of individual plant species, but the mechanisms behind these differential responses are far from being understood. To gain deeper insights into the physiological responses of individual plant species to increasing plant diversity we performed systematic untargeted metabolite profiling on a number of herbs derived from a grassland biodiversity experiment (Jena Experiment). The Jena Experiment comprises plots of varying species number (1, 2, 4, 8, 16 and 60) and number and composition of functional groups (1 to 4; grasses, legumes, tall herbs, small herbs). In this study the metabolomes of two tall-growing herbs (legume: Medicago x varia; non-legume: Knautia arvensis) and three small-growing herbs (legume: Lotus corniculatus; non-legumes: Bellis perennis, Leontodon autumnalis) in plant communities of increasing diversity were analyzed. For metabolite profiling we combined gas chromatography coupled to time-of-flight mass spectrometry (GC-TOF-MS) and UPLC coupled to FT-ICR-MS (LC-FT-MS) analyses from the same sample. This resulted in several thousands of detected m/z-features. ANOVA and multivariate statistical analysis revealed 139 significantly changed metabolites (30 by GC-TOF-MS and 109 by LC-FT-MS). The small-statured plants L. autumnalis, B. perennis and L. corniculatus showed metabolic response signatures to increasing plant diversity and species richness in contrast to tall-statured plants. Key-metabolites indicated C- and N-limitation for the non-leguminous small-statured species B. perennis and L. autumnalis, while the metabolic signature of the small-statured legume L. corniculatus indicated facilitation by other legumes. Thus, metabolomic analysis provided evidence for negative effects of resource competition on the investigated small-statured herbs that might mechanistically explain their decreasing performance with increasing plant diversity. In contrast, taller species often becoming dominant in mixed plant communities did not show modified metabolite profiles in response to altered resource availability with increasing plant diversity. Taken together, our study demonstrates that metabolite profiling is a strong diagnostic tool to assess individual metabolic phenotypes in response to plant diversity and ecophysiological adjustment

    Studying the effect of particle size and coating type on the blood kinetics of superparamagnetic iron oxide nanoparticles

    No full text
    Farnoosh Roohi, Jessica Lohrke, Andreas Ide, Gunnar Schütz, Katrin DasslerMR and CT Contrast Media Research, Bayer Pharma AG, Berlin, GermanyPurpose: Magnetic resonance imaging (MRI), one of the most powerful imaging techniques available, usually requires the use of an on-demand designed contrast agent to fully exploit its potential. The blood kinetics of the contrast agent represent an important factor that needs to be considered depending on the objective of the medical examination. For particulate contrast agents, such as superparamagnetic iron oxide nanoparticles (SPIOs), the key parameters are particle size and characteristics of the coating material. In this study we analyzed the effect of these two properties independently and systematically on the magnetic behavior and blood half-life of SPIOs.Methods: Eleven different SPIOs were synthesized for this study. In the first set (a), seven carboxydextran (CDX)-coated SPIOs of different sizes (19–86 nm) were obtained by fractionating a broadly size-distributed CDX–SPIO. The second set (b) contained three SPIOs of identical size (50 nm) that were stabilized with different coating materials, polyacrylic acid (PAA), polyethylene glycol, and starch. Furthermore, small PAA–SPIOs (20 nm) were synthesized to gain a global insight into the effects of particle size vs coating characteristics. Saturation magnetization and proton relaxivity were determined to represent the magnetic and imaging properties. The blood half-life was analyzed in rats using MRI, time-domain nuclear magnetic resonance, and inductively coupled plasma optical emission spectrometry.Results: By changing the particle size without modifying any other parameters, the relaxivity r2 increased with increasing mean particle diameter. However, the blood half-life was shorter for larger particles. The effect of the coating material on magnetic properties was less pronounced, but it had a strong influence on blood kinetics depending on the ionic character of the coating material.Conclusion: In this report we systematically demonstrated that both particle size and coating material influence blood kinetics and magnetic properties of SPIO independently. These data provide key information for the selection of a contrast agent for a defined application and are additionally valuable for other nano areas, such as hyperthermia, drug delivery, and nanotoxicology.Keywords: SPIO, relaxivity, blood half-life, MR

    The physiological phosphorylation of tau is critically changed in fetal brains of individuals with Down syndrome

    No full text
    Aims: Down syndrome (DS) is a common cause of mental retardation accompanied by cognitive impairment. Comprehensive studies suggested a link between development and ageing, as nearly all individuals with DS develop Alzheimer disease (AD)-like pathology. However, there is still a paucity of data on tau in early DS to support this notion. Methods: Using morphometric immunohistochemistry we compared tau phosphorylation in normal brains and in brains of individuals with DS from early development until early postnatal life. Results: We observed in DS a critical loss of physiological phosphorylation of tau. Rhombencephalic structures showed prominent differences between controls and DS using antibodies AT8 (Ser-202/Thr-205) and AT180 (Thr-231). In contrast, in the subiculum only a small portion of controls deviated from DS using antibodies AT100 (Thr-212/Ser-214) and AT270 (Thr-181). With exception of the subiculum, phosphorylation-independent tau did not differ between groups, as confirmed by immunostaining for the HT-7 antibody (epitope between 159 and 163 of the human tau) as well. Discussion: Our observations suggest functional tau disturbance in DS brains during development, rather than axonal loss. This supports the role of tau as a further important player in the pathophysiology of cognitive impairment in DS and related AD
    corecore