148 research outputs found
Cyclodextrin modulation of gallic acid in vitro antibacterial activity
The substitution of large spectrum antibiotics for natural bioactive molecules (especially polyphenolics) for the treatment of wound infections has come into prominence in the pharmaceutical industry. However, the use of such molecules depends on their stability during environmental stress and on their ability to reach the action site without losing biological properties. The application of cyclodextrins as a vehicle for polyphenolics protection has been documented and appears to enhance the properties of bioactive molecules. Therefore, the encapsulation of gallic acid, an antibacterial agent with low stability, by -cyclodextrin, (2-hydroxy) propyl--cyclodextrin and methyl--cyclodextrin, was investigated. Encapsulation by -cyclodextrin was confirmed for pH 3 and 5, with similar stability parameters. The (2-hydroxy) propyl--cyclodextrin and methyl--cyclodextrin interactions with gallic acid were only confirmed at pH 3. Among the three cyclodextrins, better gallic acid encapsulation were observed for (2-hydroxy) propyl--cyclodextrin, followed by -cyclodextrin and methyl--cyclodextrin. The effect of cyclodextrin encapsulation on the gallic acid antibacterial activity was also analysed. The antibacterial activity of the inclusion complexes was investigated here for the first time. According to the results, encapsulation of gallic acid by (2-hydroxy) propyl--cyclodextrin seems to be a viable option for the treatment of skin and soft tissue infections, since this inclusion complex has good stability and antibacterial activity.The authors are grateful for the FCT Strategic Project PEst-OE/EQB/LA0023/2013 and the Project "BioHealth-Biotechnology and Bioengineering approaches to improve health quality", Ref. NORTE-07-0124-FEDER-000027, co-funded by the "Programa Operacional Regional do Norte" (ON.2-O Novo Norte), QREN, FEDER. The authors also acknowledge the project "Consolidating Research Expertise and Resources on Cellular and Molecular Biotechnology at CEB/IBB", Ref. FCOMP-01-0124-FEDER-027462. This work is, also, funded by FEDER funds through the Operational Programme for Competitiveness Factors-COMPETE and National Funds through FCT-Foundation for Science and Technology under the project PEst-C/CTM/UI0264/2011. Additionally, the authors would like to thank the FCT for the grant for E. Pinho (SFRH/BD/62665/2009)
Analysis of chlorpheniramine in human urine samples using dispersive liquid-liquid microextraction combined with high-performance liquid chromatography
A simple and environmentally friendly microextraction technique was used for determination of chlorpheniramine (CPM), an antihistamine drug, in human urine samples using dispersive liquid-liquid microextraction (DLLME) followed by high performance liquid chromatography with diode array detection (HPLC-DAD). In this extraction technique, an appropriate mixture of acetonitrile (disperser solvent) and carbon tetrachloride (extraction solvent) was rapidly injected into the urine sample containing the target analyte. Tiny droplets of extractant were formed and dispersed into the sample solution and then sedimented at the bottom of the conical test tube by centrifugation. Under optimal conditions, the calibration curve was linear in the range of 0.055-5.5 µg mL-1, with a detection limit of 16.5 ng mL-1. This proposed method was successfully applied to the analysis of real urine samples. Low consumption of toxic organic solvents, simplicity of operation, low cost and acceptable figures of merit are the main advantages of the proposed technique
Effects of buffer loading for electrospray ionization mass spectrometry of a noncovalent protein complex that requires high concentrations of essential salts
Investigation of the initial fragmentation of oligodeoxynucleotides in a quadrupole ion trap: Charge level-related base loss
Stability of the homopentameric b subunits of shiga toxins 1 and 2 in solution and the gas phase as revealed by nanoelectrospray fourier transform ion cyclotron resonance mass spectrometry
Dispersive micro-solid-phase extraction of dopamine, epinephrine and norepinephrine from biological samples based on green deep eutectic solvents and Fe<sub>3</sub>O<sub>4</sub>@MIL-100 (Fe) core–shell nanoparticles grafted with pyrocatechol
DA, EP and NE were determined without interference of ascorbic acid using grafted Fe3O4@MIL-100 (Fe) NPs and a green solvent.</p
- …
