20 research outputs found

    Mobility of an axisymmetric particle near an elastic interface

    Get PDF
    Using a fully analytical theory, we compute the leading-order corrections to the translational, rotational and translation–rotation coupling mobilities of an arbitrary axisymmetric particle immersed in a Newtonian fluid moving near an elastic cell membrane that exhibits resistance towards stretching and bending. The frequency-dependent mobility corrections are expressed as general relations involving separately the particle’s shape-dependent bulk mobility and the shape-independent parameters such as the membrane–particle distance, the particle orientation and the characteristic frequencies associated with shearing and bending of the membrane. This makes the equations applicable to an arbitrary-shaped axisymmetric particle provided that its bulk mobilities are known, either analytically or numerically. For a spheroidal particle, these general relations reduce to simple expressions in terms of the particle’s eccentricity. We find that the corrections to the translation–rotation coupling mobility are primarily determined by bending, whereas shearing manifests itself in a more pronounced way in the rotational mobility. We demonstrate the validity of the analytical approximations by a detailed comparison with boundary integral simulations of a truly extended spheroidal particle. They are found to be in a good agreement over the whole range of applied frequencies.A.D.-M.-I. and S.G. thank the Volkswagen Foundation for financial support and acknowledge the Gauss Center for Supercomputing e.V. for providing computing time on the GCS Supercomputer SuperMUC at Leibniz Supercomputing Center. This work has been supported by the Ministry of Science and Higher Education of Poland via the Mobility Plus Fellowship awarded to M.L. This article is based upon work from COST Action MP1305, supported by COST (European Cooperation in Science and Technology)

    A reciprocal theorem for the prediction of the normal force induced on a particle translating parallel to an elastic membrane

    Get PDF
    When an elastic object is dragged through a viscous fluid tangent to a rigid boundary, it experiences a lift force perpendicular to its direction of motion. An analogous lift mechanism occurs when a rigid symmetric object translates parallel to an elastic interface or a soft substrate. The induced lift force is attributed to an elastohydrodynamic coupling that arises from the breaking of the flow reversal symmetry induced by the elastic deformation of the translating object or the interface. Here we derive explicit analytical expressions for the quasi-steady state lift force exerted on a rigid spherical particle translating parallel to a finite-sized membrane exhibiting a resistance toward both shear and bending. Our analytical approach proceeds through the application of the Lorentz reciprocal theorem so as to obtain the solution of the flow problem using a perturbation technique for small deformations of the membrane. We find that the shear-related contribution to the normal force leads to an attractive interaction between the particle and the membrane. This emerging attractive force decreases quadratically with the system size to eventually vanish in the limit of an infinitely-extended membrane. In contrast, membrane bending leads to a repulsive interaction whose effect becomes more pronounced upon increasing the system size, where the lift force is found to diverge logarithmically for an infinitely-large membrane. The unphysical divergence of the bending-induced lift force can be rendered finite by regularizing the solution with a cut-off length beyond which the bending forces become subdominant to an external body force.Comment: 15 pages, 4 figures, 80 references. Under revie

    Hydrodynamic coupling and rotational mobilities near planar elastic membranes

    Get PDF
    We study theoretically and numerically the coupling and rotational hydrodynamic interactions between spherical particles near a planar elastic membrane that exhibits resistance towards shear and bending. Using a combination of the multipole expansion and Faxen's theorems, we express the frequency-dependent hydrodynamic mobility functions as a power series of the ratio of the particle radius to the distance from the membrane for the self mobilities, and as a power series of the ratio of the radius to the interparticle distance for the pair mobilities. In the quasi-steady limit of zero frequency, we find that the shear- and bending-related contributions to the particle mobilities may have additive or suppressive effects depending on the membrane properties in addition to the geometric configuration of the interacting particles relative to the confining membrane. To elucidate the effect and role of the change of sign observed in the particle self and pair mobilities, we consider an example involving a torque-free doublet of counterrotating particles near an elastic membrane. We find that the induced rotation rate of the doublet around its center of mass may differ in magnitude and direction depending on the membrane shear and bending properties. Near a membrane of only energetic resistance toward shear deformation, such as that of a certain type of elastic capsules, the doublet undergoes rotation of the same sense as observed near a no-slip wall. Near a membrane of only energetic resistance toward bending, such as that of a fluid vesicle, we find a reversed sense of rotation. Our analytical predictions are supplemented and compared with fully resolved boundary integral simulations where a very good agreement is obtained over the whole range of applied frequencies.Comment: 14 pages, 7 figures. Revised manuscript resubmitted to J. Chem. Phy

    Towards an analytical description of active microswimmers in clean and in surfactant-covered drops

    Get PDF
    Geometric confinements are frequently encountered in the biological world and strongly affect the stability, topology, and transport properties of active suspensions in viscous flow. Based on a far-field analytical model, the low-Reynolds-number locomotion of a self-propelled microswimmer moving inside a clean viscous drop or a drop covered with a homogeneously distributed surfactant, is theoretically examined. The interfacial viscous stresses induced by the surfactant are described by the well-established Boussinesq-Scriven constitutive rheological model. Moreover, the active agent is represented by a force dipole and the resulting fluid-mediated hydrodynamic couplings between the swimmer and the confining drop are investigated. We find that the presence of the surfactant significantly alters the dynamics of the encapsulated swimmer by enhancing its reorientation. Exact solutions for the velocity images for the Stokeslet and dipolar flow singularities inside the drop are introduced and expressed in terms of infinite series of harmonic components. Our results offer useful insights into guiding principles for the control of confined active matter systems and support the objective of utilizing synthetic microswimmers to drive drops for targeted drug delivery applications.Comment: 19 pages, 7 figures. Regular article contributed to the Topical Issue of the European Physical Journal E entitled "Physics of Motile Active Matter" edited by Gerhard Gompper, Clemens Bechinger, Holger Stark, and Roland G. Winkle

    Oscillatory surface rheotaxis of swimming E. coli bacteria

    Full text link
    Bacterial contamination of biological conducts, catheters or water resources is a major threat to public health and can be amplified by the ability of bacteria to swim upstream. The mechanisms of this rheotaxis, the reorientation with respect to flow gradients, often in complex and confined environments, are still poorly understood. Here, we follow individual E. coli bacteria swimming at surfaces under shear flow with two complementary experimental assays, based on 3D Lagrangian tracking and fluorescent flagellar labelling and we develop a theoretical model for their rheotactic motion. Three transitions are identified with increasing shear rate: Above a first critical shear rate, bacteria shift to swimming upstream. After a second threshold, we report the discovery of an oscillatory rheotaxis. Beyond a third transition, we further observe coexistence of rheotaxis along the positive and negative vorticity directions. A full theoretical analysis explains these regimes and predicts the corresponding critical shear rates. The predicted transitions as well as the oscillation dynamics are in good agreement with experimental observations. Our results shed new light on bacterial transport and reveal new strategies for contamination prevention.Comment: 12 pages, 5 figure

    Optimal swimmers can be pullers, pushers or neutral depending on the shape

    Get PDF
    The ability of microswimmers to deploy optimal propulsion strategies is of paramount importance for their locomotory performance and survival at low Reynolds numbers. Although for perfectly spherical swimmers minimum dissipation requires a neutral-type swimming, any departure from the spherical shape may lead the swimmer to adopt a new propulsion strategy, namely those of puller- or pusher-type swimming. In this study, by using the minimum dissipation theorem for microswimmers, we determine the flow field of an optimal nearly spherical swimmer, and show that indeed depending on the shape profile, the optimal swimmer can be a puller, pusher or neutral. Using an asymptotic approach, we find that amongst all the modes of the shape function, only the third mode determines, to leading order, the swimming type of the optimal swimmer

    Steady azimuthal flow field induced by a rotating sphere near a rigid disk or inside a gap between two coaxially positioned rigid disks

    No full text
    Geometric confinements play an important role in many physical and biological processes and significantly affect the rheology and behavior of colloidal suspensions at low Reynolds numbers. On the basis of the linear Stokes equations, we investigate theoretically and computationally the viscous azimuthal flow induced by the slow rotation of a small spherical particle located in the vicinity of a rigid no-slip disk or inside a gap between two coaxially positioned rigid no-slip disks of the same radius. We formulate the solution of the hydrodynamic problem as a mixed-boundary-value problem in the whole fluid domain, which we subsequently transform into a system of dual integral equations. Near a stationary disk, we show that the resulting integral equation can be reduced into an elementary Abel integral equation that admits a unique analytical solution. Between two coaxially positioned stationary disks, we demonstrate that the flow problem can be transformed into a system of two Fredholm integral equations of the first kind. The latter are solved by means of numerical approaches. Using our solution, we further investigate the effect of the disks on the slow rotational motion of a colloidal particle and provide expressions of the hydrodynamic mobility as a function of the system geometry. We compare our results with corresponding finite-element simulations and observe very good agreement

    Microparticle Brownian motion near an air-water interface governed by direction-dependent boundary conditions

    No full text
    Hypothesis: Although the dynamics of colloids in the vicinity of a solid interface has been widely characterized in the past, experimental studies of Brownian diffusion close to an air–water interface are rare and limited to particle-interface gap distances larger than the particle size. At the still unexplored lower distances, the dynamics is expected to be extremely sensitive to boundary conditions at the air–water interface. There, ad hoc experiments would provide a quantitative validation of predictions. Experiments: Using a specially designed dual wave interferometric setup, the 3D dynamics of 9 μm diameter particles at a few hundreds of nanometers from an air–water interface is here measured in thermal equilibrium. Findings: Intriguingly, while the measured dynamics parallel to the interface approaches expected predictions for slip boundary conditions, the Brownian motion normal to the interface is very close to the predictions for no-slip boundary conditions. These puzzling results are rationalized considering current models of incompressible interfacial flow and deepened developing an ad hoc model which considers the contribution of tiny concentrations of surface active particles at the interface. We argue that such condition governs the particle dynamics in a large spectrum of systems ranging from biofilm formation to flotation process
    corecore