963,777 research outputs found

    The NOAA TOGA antenna array

    Get PDF
    The Aeronomy Laboratory recently installed a 100 x 100 meter array antenna with limited beam steering on Christmas Island as a part of the TOGA (Tropical Ocean and Global Atmosphere) program. The array and the associated beam steering and indicating hardware are described

    Lattice QCD Calculations of Hadron Structure: Constituent Quarks and Chiral Symmetry

    Get PDF
    New data from parity-violating experiments on the deuteron now allow isolation of the strange-quark contribution to the nucleon magnetic moment, G_M^s(0), without the uncertainty surrounding the anapole moment of the nucleon. Still, best estimates place G_M^s(0) > 0. It is illustrated how this experimental result challenges the very cornerstone of the constituent quark model. The chiral physics giving rise to G_M^s(0) \sim 0 is illustrated.Comment: Invited talk presented by DBL at the 16th Int. Conf. on Few Body Problems (Taipei, March 6-10, 2000); 9 pages, 5 figure

    Inelastic collisions of relativistic electrons with atomic targets assisted by a laser field

    Full text link
    We consider inelastic collisions between relativistic electrons and atomic targets assisted by a low-frequency laser field in the case when this field is still much weaker than the typical internal fields in the target. Concentrating on target transitions we show that they can be substantially affected by the presence of the laser field. This may occur either via strong modifications in the motion of the relativistic electrons caused by the electron-laser interaction or via the Compton effect when the incident electrons convert laser photon(s) into photons with frequencies equal to target transition frequencies.Comment: 4 pages, 2 figure

    Cosmic balloons

    Full text link
    Cosmic balloons, consisting of relativistic particles trapped inside a spherical domain wall, may be created in the early universe. We calculate the balloon mass MM as a function of the radius RR and the energy density profile, ρ(r)\rho (r), including the effects of gravity. At the maximum balloon mass 2GM/R0.522GM/R\approx 0.52 for any value of the mass density of the wall.Comment: 9 pages, LaTeX, 2 figures in separate file, UPTP-93-1

    Hadron structure on the back of an envelope

    Get PDF
    In order to remove a little of the mysticism surrounding the issue of strangeness in the nucleon, we present simple, physically transparent estimates of both the strange magnetic moment and charge radius of the proton. Although simple, the estimates are in quite good agreement with sophisticated calculations using the latest input from lattice QCD. We further explore the possible size of systematic uncertainties associated with charge symmetry violation (CSV) in the recent precise determination of the strange magnetic moment of the proton. We find that CSV acts to increase the error estimate by 0.003 \mu_N such that G_M^s = -0.046 +/- 0.022 \mu_N.Comment: 9 pages, 1 figure, Invited talk at First Workshop on Quark-Hadron Duality and the Transition to pQCD, Frascati, June 6-8 200

    Chiral extrapolation and physical insights

    Full text link
    It has recently been established that finite-range regularisation in chiral effective field theory enables the accurate extrapolation of modern lattice QCD results to the chiral regime. We review some of the highlights of extrapolations of quenched lattice QCD results, including spectroscopy and magnetic moments. The Δ\Delta resonance displays peculiar chiral features in the quenched theory which can be exploited to demonstrate the presence of significant chiral corrections.Comment: 6 pages, 5 figures, presented at LHP2003, Cairns, Australi

    Covariant calculation of strange decays of baryon resonances

    Full text link
    We present results for kaon decay widths of baryon resonances from a relativistic study with constituent quark models. The calculations are done in the point-form of Poincare-invariant quantum mechanics with a spectator-model decay operator. We obtain covariant predictions of the Goldstone-boson-exchange and a variant of the one-gluon-exchange constituent quark models for all kaon decay widths of established baryon resonances. They are generally characterized by underestimating the available experimental data. In particular, the widths of kaon decays with increasing strangeness in the baryon turn out to be extremely small. We also consider the nonrelativistic limit, leading to the familiar elementary emission model, and demonstrate the importance of relativistic effects. It is found that the nonrelativistic approach evidently misses sensible influences from Lorentz boosts and some essential spin-coupling terms.Comment: 6 pages, 3 table

    Unsupervised machine learning for detection of phase transitions in off-lattice systems II. Applications

    Get PDF
    We outline how principal component analysis (PCA) can be applied to particle configuration data to detect a variety of phase transitions in off-lattice systems, both in and out of equilibrium. Specifically, we discuss its application to study 1) the nonequilibrium random organization (RandOrg) model that exhibits a phase transition from quiescent to steady-state behavior as a function of density, 2) orientationally and positionally driven equilibrium phase transitions for hard ellipses, and 3) compositionally driven demixing transitions in the non-additive binary Widom-Rowlinson mixture

    Critical properties of a continuous family of XY noncollinear magnets

    Full text link
    Monte Carlo methods are used to study a family of three dimensional XY frustrated models interpolating continuously between the stacked triangular antiferromagnets and a variant of this model for which a local rigidity constraint is imposed. Our study leads us to conclude that generically weak first order behavior occurs in this family of models in agreement with a recent nonperturbative renormalization group description of frustrated magnets.Comment: 5 pages, 3 figures, minor changes, published versio
    corecore