4,764 research outputs found

    Sub-millimetre observations of hyperluminous infrared galaxies

    Full text link
    We present sub-mm photometry for 11 Hyperluminous Infrared Galaxies (HLIRGs) and use radiative transfer models for starbursts and AGN to investigate the IR emission. In all sources both a starburst and AGN are required to explain the IR emission. The mean starburst fraction is 35%, with a range spanning 80% starburst dominated to 80% AGN dominated. In all cases the starburst dominates at rest-frame wavelengths >50 microns, with star formation rates >500 solar masses per year. The trend of increasing AGN fraction with increasing IR luminosity seen in IRAS galaxies peaks in HLIRGs, and is not higher than the fraction seen in bright ULIRGs. The AGN and starburst luminosities correlate, suggesting that a common physical factor, plausibly the dust masses, governs their luminosities. Our results suggest that the HLIRG population is comprised both of ULIRG-like galaxy mergers, and of young galaxies going through their maximal star formation periods whilst harbouring an AGN. The coeval AGN and starburst activity in our sources implies that starburst and AGN activity, and the peak starburst and AGN luminosities, can be coeval in active galaxies generally. When extrapolated to high-z our sources have comparable sub-mm fluxes to sub-mm survey sources. At least some sub-mm survey sources are therefore likely to be comprised of similar galaxy populations to those found in the HLIRG population. It is also plausible from these results that high-z sub-mm sources harbour heavily obscured AGN. The differences in X-ray and sub-mm properties between HLIRGs at z~1 and sub-mm sources at z~3 implies evolution between the two epochs. Either the mean AGN obscuration level is greater at z~3 than at z~1, or the fraction of IR-luminous sources at z~3 that contain AGN is smaller than that at z~1.Comment: 15 pages. Accepted for publication in MNRA

    Starburst and AGN activity in ultraluminous infrared galaxies

    Full text link
    (Abridged) We examine the power source of 41 local Ultraluminous Infrared Galaxies using archival infrared and optical photometry. We fit the observed Spectral Energy Distributions (SEDs) with starburst and AGN components; each component being drawn from a family of templates. We find all of the sample require a starburst, whereas only half require an AGN. In 90% of the sample the starburst provides over half the IR emission, with a mean fractional luminosity of 82%. When combined with other galaxy samples we find that starburst and AGN luminosities correlate over 6 decades in IR luminosity suggesting that a common factor governs both luminosities, plausibly the gas masses in the nuclear regions. We find that the mid-IR 7.7 micron line-continuum ratio is no indication of the starburst luminosity, or the fractional AGN luminosity, and therefore that this ratio is not a reliable diagnostic of the power source in ULIRGs. We propose that the scatter in the radio-IR correlation in ULIRGs is due to a skewed starburst IMF and/or relic relativistic electrons from a previous starburst, rather than contamination from an obscured AGN. We show that most ULIRGs undergo multiple starbursts during their lifetime, and by inference that mergers between more than two galaxies may be common amongst ULIRGs. Our results support the evolutionary model for ULIRGs proposed by Farrah et al 2001, where they can follow many different evolutionary paths of starburst and AGN activity in transforming merging spiral galaxies into elliptical galaxies, but that most do not go through an optical QSO phase. The lower level of AGN activity in our local sample than in z~1 HLIRGs implies that the two samples are distinct populations. We postulate that different galaxy formation processes at high-z are responsible for this difference.Comment: 24 pages, 8 figures. Accepted for publication in MNRA

    HST imaging of hyperluminous infrared galaxies

    Full text link
    We present HST WFPC2 I band imaging for a sample of 9 Hyperluminous Infrared Galaxies spanning a redshift range 0.45 < z < 1.34. Three of the sample have morphologies showing evidence for interactions, six are QSOs. Host galaxies in the QSOs are reliably detected out to z ~ 0.8. The detected QSO host galaxies have an elliptical morphology with scalelengths spanning 6.5 < r_{e}(Kpc) < 88 and absolute k corrected magnitudes spanning -24.5 < M_{I} < -25.2. There is no clear correlation between the IR power source and the optical morphology. None of the sources in the sample, including F15307+3252, show any evidence for gravitational lensing. We infer that the IR luminosities are thus real. Based on these results, and previous studies of HLIRGs, we conclude that this class of object is broadly consistent with being a simple extrapolation of the ULIRG population to higher luminosities; ULIRGs being mainly violently interacting systems powered by starbursts and/or AGN. Only a small number of sources whose infrared luminosities exceed 10^{13}Lsun are intrinsically less luminous objects which have been boosted by gravitational lensing.Comment: 16 Pages. Accepted for publication in MNRA

    Faint Radio Sources and Star Formation History

    Full text link
    Faint extragalactic radio sources provide important information about the global history of star formation. Sensitive radio observations of the Hubble Deep Field and other fields have found that sub-mJy radio sources are predominantly associated with star formation activity rather than AGN. Radio observations of star forming galaxies have the advantage of being independent of extinction by dust. We use the FIR-radio correlation to compare the radio and FIR backgrounds, and make several conclusions about the star forming galaxies producing the FIR background. We then use the redshift distribution of faint radio sources to determine the evolution of the radio luminosity function, and thus estimate the star formation density as a function of redshift.Comment: 12 pages, 9 figures, latex using texas.sty, to appear in the CD-ROM Proceedings of the 19th Texas Symposium on Relativistic Astrophysics and Cosmology, held in Paris, France, Dec. 14-18, 1998. Eds.: J. Paul, T. Montmerle, and E. Aubourg (CEA Saclay). No changes to paper, just updated publication info in this commen

    The role of course development and design in an itinerant schooling program: the perceptions of staff members of the School of Distance Education in Brisbane, Queensland

    Get PDF
    This paper examines the perceptions of teachers associated with the Brisbane School of Distance Education (Queensland, Australia), concerning their role in the establishment and implementation of a primary education program for children of the Showmen's Guild of Australasia. Interviews with five itinerant teachers revealed that their responsibilities include assessing correspondence papers from students and maintaining telephone contact with students, home tutors, and parents, as well as working in selected towns on a short-term basis to teach 'face-to-face' lessons to itinerant students. Each teacher worked with between 15 and 20 children, usually in family groups across grade levels. Teachers expressed concerns about the show children's lifestyle and how this has affected their educational and social development. However, all teachers felt that the distance education program had improved the children's educational opportunities and adequately addressed their educational needs. Disadvantages of the children's itinerant lifestyle that the program was unable to address were lack of routine, lack of continuity, dependence on the support of the home tutor, role conflicts of local teachers, and insufficient program funding. Implications for other itinerant education projects include recognizing the importance of teacher attitudes when implementing an educational program for a marginalized group. Contains 20 references. (LP

    The star-formation history of the universe - an infrared perspective

    Get PDF
    A simple and versatile parameterized approach to the star formation history allows a quantitative investigation of the constraints from far infrared and submillimetre counts and background intensity measurements. The models include four spectral components: infrared cirrus (emission from interstellar dust), an M82-like starburst, an Arp220-like starburst and an AGN dust torus. The 60 ÎŒ\mum luminosity function is determined for each chosen rate of evolution using the PSCz redshift data for 15000 galaxies. The proportions of each spectral type as a function of 60 ÎŒ\mum luminosity are chosen for consistency with IRAS and SCUBA colour-luminosity relations, and with the fraction of AGN as a function of luminosity found in 12 ÎŒ\mum samples. The luminosity function for each component at any wavelength can then be calculated from the assumed spectral energy distributions. With assumptions about the optical seds corresponding to each component and, for the AGN component, the optical and near infrared counts can be accurately modelled. A good fit to the observed counts at 0.44, 2.2, 15, 60, 90, 175 and 850 ÎŒ\mum can be found with pure luminosity evolution in all 3 cosmological models investigated: Ωo\Omega_o = 1, Ωo\Omega_o = 0.3 (Λ\Lambda = 0), and Ωo\Omega_o = 0.3, Λ\Lambda = 0.7. All 3 models also give an acceptable fit to the integrated background spectrum. Selected predictions of the models, for example redshift distributions for each component at selected wavelengths and fluxes, are shown. The total mass-density of stars generated is consistent with that observed, in all 3 cosmological models.Comment: 20 pages, 25 figures. Accepted for publication in ApJ. Full details of models can be found at http://astro.ic.ac.uk/~mrr/countmodel

    New Results from a Near-Infrared Search for Hidden Broad-Line Regions in Ultraluminous Infrared Galaxies

    Get PDF
    This paper reports the latest results from a near-infrared search for hidden broad-line regions (BLRs: FWHM >~ 2,000 km/s) in ultraluminous infrared galaxies (ULIGs). The new sample contains thirty-nine ULIGs from the 1-Jy sample selected for their lack of BLRs at optical wavelengths. The results from this new study are combined with those from our previous optical and near-infrared surveys to derive the fraction of all ULIGs with optical or near-infrared signs of genuine AGN activity (either a BLR or [Si VI] emission). Comparisons of the dereddened emission-line luminosities of the optical or obscured BLRs detected in the ULIGs of the 1-Jy sample with those of optical quasars indicate that the obscured AGN/quasar in ULIGs is the main source of energy in at least 15 -- 25% of all ULIGs in the 1-Jy sample. This fraction is 30 -- 50% among ULIGs with L_ir > 10^{12.3} L_sun. These results are compatible with those from recent mid-infrared spectroscopic surveys carried out with ISO. (abridged)Comment: 40 pages including 10 figures and 3 tables (Table 3 should be printed in landscape mode

    Evolution of the far-infrared luminosity functions in the Spitzer Wide-area Infrared Extragalactic Legacy Survey

    Full text link
    We present new observational determination of the evolution of the rest-frame 70 and 160 micron and total infrared (TIR) galaxy luminosity functions (LFs) using 70 micron data from the Spitzer Wide-area Infrared Extragalactic Legacy Survey (SWIRE). The LFs were constructed for sources with spectroscopic redshifts only in the XMM-LSS and Lockman Hole fields from the SWIRE photometric redshift catalogue. The 70 micron and TIR LFs were constructed in the redshift range 0<z<1.2 and the 160 micron LF was constructed in the redshift range 0<z<0.5 using a parametric Bayesian and the vmax methods. We assume in our models, that the faint-end power-law index of the LF does not evolve with redshifts. We find the the double power-law model is a better representation of the IR LF than the more commonly used power-law and Gaussian model. We model the evolution of the FIR LFs as a function of redshift where where the characteristic luminosity, L∗L^\ast evolve as \propto(1+z)^{\alpha_\textsc{l}}. The rest-frame 70 micron LF shows a strong luminosity evolution out to z=1.2 with alpha_l=3.41^{+0.18}_{-0.25}. The rest-frame 160 micron LF also showed rapid luminosity evolution with alpha_l=5.53^{+0.28}_{-0.23} out to z=0.5. The rate of evolution in luminosity is consistent with values estimated from previous studies using data from IRAS, ISO and Spitzer. The TIR LF evolves in luminosity with alpha_l=3.82^{+0.28}_{-0.16} which is in agreement with previous results from Spitzer 24 micron which find strong luminosity evolution. By integrating the LF we calculated the co-moving IR luminosity density out to z=1.2, which confirm the rapid evolution in number density of LIRGs and ULIRGs which contribute ~68^{+10}_{-07} % to the co-moving star formation rate density at z=1.2. Our results based on 70 micron data confirms that the bulk of the star formation at z=1 takes place in dust obscured objects.Comment: 17 pages, 14 figure

    Static Shear Testing of 3M VHB 4611F and VHB 4941P Tape in the construction of Acoustic Movable Partition Wall panels

    Get PDF
    This paper investigates the effectivenes of 3M VHB 4611F and VHB 4941P tape in the construction of Acoustic Movable Partition Wall panels
    • 

    corecore