4,017 research outputs found

    Implications of Qudit Superselection rules for the Theory of Decoherence-free Subsystems

    Full text link
    The use of d-state systems, or qudits, in quantum information processing is discussed. Three-state and higher dimensional quantum systems are known to have very different properties from two-state systems, i.e., qubits. In particular there exist qudit states which are not equivalent under local unitary transformations unless a selection rule is violated. This observation is shown to be an important factor in the theory of decoherence-free, or noiseless, subsystems. Experimentally observable consequences and methods for distinguishing these states are also provided, including the explicit construction of new decoherence-free or noiseless subsystems from qutrits. Implications for simulating quantum systems with quantum systems are also discussed.Comment: 13 pages, 1 figures, Version 2: Typos corrected, references fixed and new ones added, also includes referees suggested changes and a new exampl

    Universal Leakage Elimination

    Full text link
    ``Leakage'' errors are particularly serious errors which couple states within a code subspace to states outside of that subspace thus destroying the error protection benefit afforded by an encoded state. We generalize an earlier method for producing leakage elimination decoupling operations and examine the effects of the leakage eliminating operations on decoherence-free or noiseless subsystems which encode one logical, or protected qubit into three or four qubits. We find that by eliminating the large class of leakage errors, under some circumstances, we can create the conditions for a decoherence free evolution. In other cases we identify a combination decoherence-free and quantum error correcting code which could eliminate errors in solid-state qubits with anisotropic exchange interaction Hamiltonians and enable universal quantum computing with only these interactions.Comment: 14 pages, no figures, new version has references updated/fixe

    Perfect Function Transfer in two- and three- dimensions without initialization

    Get PDF
    We find analytic models that can perfectly transfer, without state initializati$ or remote collaboration, arbitrary functions in two- and three-dimensional interacting bosonic and fermionic networks. We elaborate on a possible implementation of state transfer through bosonic or fermionic atoms trapped in optical lattices. A significant finding is that the state of a spin qubit can be perfectly transferred through a fermionic system. Families of Hamiltonians, both linear and nonlinear, are described which are related to the linear Boson model and that enable the perfect transfer of arbitrary functions. This includes entangled states such as decoherence-free subsystems enabling noise protection of the transferred state.Comment: 4 pages, no figur

    Population Studies of Eagles at Caledon State Park

    Get PDF

    Miniature Optical Atomic Clock: Stabilization of a Kerr Comb Oscillator

    Full text link
    Mechanical clocks consist of a pendulum and a clockwork that translates the pendulum period to displayed time. The most advanced clocks utilize optical transitions in atoms in place of the pendulum and an optical frequency comb generated by a femtosecond laser as the clockwork. The comb must be stabilized at two points along its frequency spectrum: one with a laser to lock a comb line to a transition in the atom, and another through self referencing to stabilize the frequency interval between the comb lines. This approach requires advanced techniques, so optical atomic clocks are currently laboratory devices in specialized labs. In this paper we leverage unique properties of Kerr comb oscillators for realization of optical atomic clocks in miniature form factors. In particular, we describe a clock based on D1 transition of 87Rb that fits in the palm of the hand, and can be further miniaturized to chip scale.Comment: 4 pages, 4 figure

    Casimir Invariants for Systems Undergoing Collective Motion

    Full text link
    Dicke states are states of a collection of particles which have been under active investigation for several reasons. One reason is that the decay rates of these states can be quite different from a set of independently evolving particles. Another reason is that a particular class of these states are decoherence-free or noiseless with respect to a set of errors. These noiseless states, or more generally subsystems, can avoid certain types of errors in quantum information processing devices. Here we provide a method for calculating invariants of systems of particles undergoing collective motions. These invariants can be used to determine a complete set of commuting observables for a class of Dicke states as well as identify possible logical operations for decoherence-free/noiseless subsystems. Our method is quite general and provides results for cases where the constituent particles have more than two internal states.Comment: 5 page
    corecore