318 research outputs found

    High-Resolution Spectroscopy from 3050 to 10000 A of the HDF-S QSO J2233-606 with UVES at the ESO VLT

    Get PDF
    We report on high-resolution observations (ℜ≃45000\Re \simeq 45000) of the Hubble Deep Field South QSO J2233-606 obtained with the VLT UV-Visual Echelle Spectrograph (UVES). We present spectral data for the wavelength region 3050<λ<100003050 < \lambda < 10000 \AA. The S/NS/N ratio of the final spectrum is about 50 per resolution element at 4000 \AA, 90 at 5000 \AA, 80 at 6000 \AA, 40 at 8000 \AA. Redshifts, column densities and Doppler widths of the absorption features have been determined with Voigt-profile fitting. A total of 621 lines have been measured. In particular 270 Ly-alpha lines, 41 Ly-beta and 24 systems containing metal lines have been identified. Together with other data in the literature, the present spectrum confirms that the evolution of the number density of Ly-alpha lines with log⁥N(\log N(\huno)>14) > 14 has an upturn at z∌1.4−1.6z \sim 1.4-1.6.Comment: 34 pages Latex, with 3 PostScript figures. Astronomical Journal, in press. A few revised upper limit

    A Low Upper Limit to the Lyman Continuum Emission of two galaxies at z 3

    Get PDF
    Long exposure, long-slit spectra have been obtained in the UV/optical bands for two galaxies at z=2.96 and z=3.32 to investigate the fraction of ionizing UV photons escaping from high redshifts galaxies. The two targets are among the brightest galaxies discovered by Steidel and collaborators and they have different properties in terms of Lyman-alpha emission and dust reddening. No significant Lyman continuum emission has been detected. The noise level in the spectra implies an upper limit of f_{rel,esc}\equiv 3 f(900)/f(1500)< 16% for the relative escape fraction of ionizing photons, after correction for absorption by the intervening intergalactic medium. This upper limit is 4 times lower than the previous detection derived from a composite spectrum of 29 Lyman break galaxies at z 3.4. If this value is typical of the escape fraction of the z 3 galaxies, and is added to the expected contribution of the QSO population, the derived UV background is in good agreement with the one derived by the proximity effect.Comment: 16 pages, 2 figures, ApJ Letters in pres

    Comparing the Evolution of the Galaxy Disk Sizes with CDM Models: The Hubble Deep Field

    Full text link
    The intrinsic sizes of the field galaxies with I<26 in the Hubble and ESO-NTT Deep Fields are shown as a function of their redshifts and absolute magnitudes using photometric redshifts derived from the multicolor catalogs and are compared with the CDM predictions. Extending to lower luminosities and to higher z our previous analysis performed on the NTT field alone, we find that the distribution of the galaxy disk sizes at different cosmic epochs is within the range predicted by typical CDM models. However, the observed size distribution of faint (M_B>-19) galaxies is skewed with respect to the CDM predictions and an excess of small-size disks (R_d<2 kpc) is already present at z~ 0.5. The excess persists up to z~3 and involves brighter galaxies . Such an excess may be reduced if luminosity-dependent effects, like starburst activity in interacting galaxies, are included in the physical mechanisms governing the star formation history in CDM models.Comment: 9 pages, 3 figures, ApJ Letters in pres

    Discovery of Radio/X-ray/Optical Resolved Supernova Remnants in the Center of the Andromeda Galaxy

    Full text link
    We have detected a spatially resolved supernova remnant (SNR) in the center of the Andromeda Galaxy, in radio, X-ray, and optical wavelengths. These observations provide the highest spatial resolution imaging of a radio/X-ray/optical SNR in that galaxy to date. The multi-wavelength morphology, radio spectral index, X-ray colors, and narrow-band optical imaging are consistent with a shell-type SNR. A second SNR is also seen resolved in both radio and X-ray. By comparing the morphological sturcture of the SNRs in different wavelengths and with that in our own Galaxy, we can study the shock morphologies of SNRs in the Andromeda Galaxy. The proximity of the SNRs to the core suggests high interstellar medium density in the vicinity of the SNRs in the center of the Andromeda Galaxy.Comment: 5 pages, 3 figures, accepted for publication in ApJ

    The Discovery of a Spatially-Resolved Supernova Remnant in M31 with Chandra

    Get PDF
    Chandra observations of M31 allow the first spatially resolved X-ray image of a supernova remnant (SNR) in an external spiral galaxy. CXOM31 J004327.7+411829 is a slightly elongated ring-shaped object with a diameter of ~11'' (42 pc). In addition, the X-ray image hints that the chemical composition of the SNR is spatial dependent. The X-ray spectrum of the SNR can be well fitted with a Raymond-Smith model or a non-equilibrium ionization model. Depending on the spectral model, the 0.3-7 keV luminosity is between 3.2x10^36 erg/s and 4.5x10^37 erg/s. The age of the SNR is estimated to be 3210-22300 years and the number density of ambient gas is ~0.003-0.3 cm^-3. This suggests that the local interstellar medium around the SNR is low.Comment: 5 pages, 3 figures; accepted for publication in ApJ

    Large-Scale Correlations in the Lyman-alpha Forest at z = 3-4

    Full text link
    We present a study of the spatial coherence of the intergalactic medium toward two pairs of high-redshift quasars with moderate angular separations observed with Keck/ESI, Q1422+2309A/Q1424+2255 (z_em = 3.63, theta = 39") and Q1439-0034A/B (z_em = 4.25, theta = 33"). The crosscorrelation of transmitted flux in the Lyman-alpha forest shows a 5-7 sigma peak at zero velocity lag for both pairs. This strongly suggests that at least some of the absorbing structures span the 230-300/h_70 proper kpc transverse separation between sightlines. We also statistically examine the similarity between paired spectra as a function of transmitted flux, a measure which may be useful for comparison with numerical simulations. In investigating the dependence of the correlation functions on spectral characteristics, we find that photon noise has little impact for S/N >~ 10 per resolution element. However, the agreement between the autocorrelation along the line sight and the crosscorrelation between sightlines, a potential test of cosmological geometry, depends significantly on instrumental resolution. Finally, we present an inventory of metal lines. These include a a pair of strong C IV systems at z ~ 3.4 appearing only toward Q1439B, and a Mg II + Fe II system present toward Q1439 A and B at z = 1.68.Comment: 33 pages, 13 figures, submitted to Ap

    Photometric redshifts and selection of high redshift galaxies in the NTT and Hubble Deep Fields

    Get PDF
    We present and compare in this paper new photometric redshift catalogs of the galaxies in three public fields: the NTT Deep Field, the HDF-N and the HDF-S. Photometric redshifts have been obtained for thewhole sample, by adopting a χ2\chi^2 minimization technique on a spectral library drawn from the Bruzual and Charlot synthesis models, with the addition of dust and intergalactic absorption. The accuracy, determined from 125 galaxies with known spectroscopic redshifts, is σz∌0.08(0.3)\sigma_z\sim 0.08 (0.3) in the redshift intervals z=0−1.5(1.5−3.5)z=0-1.5 (1.5-3.5). The global redshift distribution of I-selected galaxies shows a distinct peak at intermediate redshifts, z~0.6 at I_{AB}<26 and z~0.8 at I_{AB}<27.5 followed by a tail extending to z~6. We also present for the first time the redshift distribution of the total IR-selected sample to faint limits (Ks≀21Ks \leq 21 and J≀22J\leq22). It is found that the number density of galaxies at 1.25<z<1.5 is ~ 0.1 /arcmin^22 at J<=21 and ~1./arcmin^2} at J<22, and drops to 0.3/arcmin^2 (at J<22) at 1.5<z<2. The HDFs data sets are used to compare the different results from color selection criteria and photometric redshifts in detecting galaxies in the redshift range 3.5<z<4.5 Photometric redshifts predict a number of high z candidates in both the HDF-N and HDF-S that is nearly 2 times larger than color selection criteria, and it is shown that this is primarily due to the inclusion of dusty models that were discarded in the original color selection criteria by Madau et al 1998. In several cases, the selection of these objects is made possible by the constraints from the IR bands. Finally, it is shown that galactic M stars may mimic z>5 candidates in the HDF filter set and that the 4 brightest candidates at z>5z>5 in the HDF-S are indeed most likely M stars. (ABRIDGED)Comment: Version accepted on July, 20, 2000. To appear on Astronomical Journal, Nov 2000. The data and photometric redshift catalogs presented here are available on line at http://www.mporzio.astro.it/HIGH

    The Evolution of the Luminosity Function in Deep Fields: A Comparison with CDM Models

    Get PDF
    The galaxy Luminosity Function (LF) has been estimated in the rest frame B luminosity at 0<z<1.25 and at 1700 {\AA} for 2.5<z<4.5 from deep multicolor surveys in the HDF-N, HDF-S, NTT-DF. The results have been compared with a recent version of galaxy formation models in the framework of hierarchical clustering in a flat Cold Dark Matter Universe with cosmological constant. The results show a general agreement for z<= 1, although the model LF has a steeper average slope at the faint end; at z~3 such feature results in an overprediction of the number of faint (I_{AB}~ 27) galaxies, while the agreement at the bright end becomes critically sensitive to the details of dust absorption at such redshifts. The discrepancies at the faint end show that a refined treatement of the physical processes involving smaller galaxies is to be pursued in the models, in terms of aggregation processes and/or stellar feedback heavily affecting the luminosity of the low luminosity objects. The implications of our results on the evolution of the cosmological star formation rate are discussed.Comment: Revised version; corrected magnitudes at 1700 Angstrom in figure 2; ApJ

    Chandra Studies of the X-ray Point Source Luminosity Functions of M31

    Get PDF
    Three different M31 disk fields, spanning a range of stellar populations, were observed by Chandra. We report the X-ray point source luminosity function (LF) of each region, and the LF of M31's globular clusters, and compare these with each other and with the LF of the galaxy's bulge. To interpret the results we also consider tracers of the stellar population, such as OB associations and supernova remnants. We find differences in the LFs among the fields, but cannot definitively relate them to the stellar content of the fields. We find that stellar population information, average and maximum source luminosities, X-ray source densities, and slopes of the LF are useful in combination.Comment: 7 pages, 3 figures, accepted for publication in ApJ. Higher-resolution figures available on reques

    The Asiago-ESO/RASS QSO Survey. I.The Catalog and the Local QSO Luminosity Function

    Full text link
    This paper presents the first results of a survey for bright quasars (V < 14.5 and R30. The photometric database is derived from the GSC and USNO catalogs. Quasars are identified on the basis of their X-ray emission measured in the ROSAT All Sky Survey. The surface density of quasars brighter than 15.5 mag turns out to be 9±1⋅10−3deg−29 \pm 1 \cdot 10^{-3} deg^{-2}, about 3 times higher than that estimated by the PG survey. The quasar optical Luminosity Function (LF) at 0.04<z≀0.30.04 < z \le 0.3 is computed and shown to be consistent with a Luminosity Dependent Luminosity Evolution of the type derived by La Franca and Cristiani (1997) in the range 0.3<z≀2.20.3 < z \le 2.2. The predictions of semi-analytical models of hierarchical structure formation agree remarkably well with the present observations.Comment: 54 pages Latex, with 7 PostScript figures. Some minor changes. Astronomical Journal, in pres
    • 

    corecore