7,027 research outputs found

    Renormalized parameters and perturbation theory for an n-channel Anderson model with Hund's rule coupling: Asymmetric case

    Full text link
    We explore the predictions of the renormalized perturbation theory for an n-channel Anderson model, both with and without Hund's rule coupling, in the regime away from particle-hole symmetry. For the model with n=2 we deduce the renormalized parameters from numerical renormalization group calculations, and plot them as a function of the occupation at the impurity site, nd. From these we deduce the spin, orbital and charge susceptibilities, Wilson ratios and quasiparticle density of states at T=0, in the different parameter regimes, which gives a comprehensive overview of the low energy behavior of the model. We compare the difference in Kondo behaviors at the points where nd=1 and nd=2. One unexpected feature of the results is the suppression of the charge susceptibility in the strong correlation regime over the occupation number range 1 <nd <3.Comment: 9 pages, 17 figure

    Duramycin-induced calcium release in cancer cells

    Get PDF
    Introduction: Duramycin through binding with phosphatidylethanolamine (PE) has shown potential to be an effective anti-tumour agent. However its mode of action in relation to tumour cells is not fully understood. Methods: PE expression on the surface of a panel of cancer cell lines was analysed using duramycin and subsequent antibody labelling then analysed by flow cytometry. Cell viability was also assessed via flow cytometry using annexin V and propidium iodide (PI). Calcium ion (Ca²⁺) release by tumour cells in response to duramycin was determined by spectrofluorometry following incubation with Fluo-3, AM. Confocal microscopy was performed on the cancer cell line AsPC-1 to assess real time cell response to duramycin treatment. Results: Duramycin was able to detect cell surface PE expression on all 15 cancer cell lines screened, which was shown to be duramycin concentration dependent. However higher concentrations induced necrotic cell death. Duramycin induced calcium ion (Ca²⁺) release from the cancer cell lines also in a concentration and time dependent manner. Confocal microscopy showed an influx of PI into the cells over time and induced morphological changes. Conclusion: Duramycin induces Ca²⁺ release from cancer cell lines in a time and concentration dependent relationship

    Special studies of AROD system concepts and designs

    Get PDF
    Signal processing techniques for range and range rate measurements in airborne range and orbit determinatio

    日本における公道と間道[日本内陸紀行]

    Get PDF

    La locura de Horacio Quiroga

    Get PDF

    Development of breast and bottle feeding in human infants

    Get PDF

    Historiografía de la literatura iberoamericana (1940)

    Get PDF
    corecore