8,330 research outputs found

    Duramycin-induced calcium release in cancer cells

    Get PDF
    Introduction: Duramycin through binding with phosphatidylethanolamine (PE) has shown potential to be an effective anti-tumour agent. However its mode of action in relation to tumour cells is not fully understood. Methods: PE expression on the surface of a panel of cancer cell lines was analysed using duramycin and subsequent antibody labelling then analysed by flow cytometry. Cell viability was also assessed via flow cytometry using annexin V and propidium iodide (PI). Calcium ion (Ca²⁺) release by tumour cells in response to duramycin was determined by spectrofluorometry following incubation with Fluo-3, AM. Confocal microscopy was performed on the cancer cell line AsPC-1 to assess real time cell response to duramycin treatment. Results: Duramycin was able to detect cell surface PE expression on all 15 cancer cell lines screened, which was shown to be duramycin concentration dependent. However higher concentrations induced necrotic cell death. Duramycin induced calcium ion (Ca²⁺) release from the cancer cell lines also in a concentration and time dependent manner. Confocal microscopy showed an influx of PI into the cells over time and induced morphological changes. Conclusion: Duramycin induces Ca²⁺ release from cancer cell lines in a time and concentration dependent relationship

    Fermi Liquids and the Luttinger Integral

    Get PDF
    The Luttinger Theorem, which relates the electron density to the volume of the Fermi surface in an itinerant electron system, is taken to be one of the essential features of a Fermi liquid. The microscopic derivation of this result depends on the vanishing of a certain integral, the Luttinger integral ILI_{\rm L}, which is also the basis of the Friedel sum rule for impurity models, relating the impurity occupation number to the scattering phase shift of the conduction electrons. It is known that non-zero values of ILI_{\rm L} with IL=±π/2I_{\rm L}=\pm\pi/2, occur in impurity models in phases with non-analytic low energy scattering, classified as singular Fermi liquids. Here we show the same values, IL=±π/2I_{\rm L}=\pm\pi/2, occur in an impurity model in phases with regular low energy Fermi liquid behavior. Consequently the Luttinger integral can be taken to characterize these phases, and the quantum critical points separating them interpreted as topological.Comment: 5 pages 7 figure

    Frequency-dependent fitness induces multistability in coevolutionary dynamics

    Get PDF
    Evolution is simultaneously driven by a number of processes such as mutation, competition and random sampling. Understanding which of these processes is dominating the collective evolutionary dynamics in dependence on system properties is a fundamental aim of theoretical research. Recent works quantitatively studied coevolutionary dynamics of competing species with a focus on linearly frequency-dependent interactions, derived from a game-theoretic viewpoint. However, several aspects of evolutionary dynamics, e.g. limited resources, may induce effectively nonlinear frequency dependencies. Here we study the impact of nonlinear frequency dependence on evolutionary dynamics in a model class that covers linear frequency dependence as a special case. We focus on the simplest non-trivial setting of two genotypes and analyze the co-action of nonlinear frequency dependence with asymmetric mutation rates. We find that their co-action may induce novel metastable states as well as stochastic switching dynamics between them. Our results reveal how the different mechanisms of mutation, selection and genetic drift contribute to the dynamics and the emergence of metastable states, suggesting that multistability is a generic feature in systems with frequency-dependent fitness.Comment: 12 pages, 6 figures; J. R. Soc. Interface (2012

    Renormalized parameters and perturbation theory for an n-channel Anderson model with Hund's rule coupling: Asymmetric case

    Full text link
    We explore the predictions of the renormalized perturbation theory for an n-channel Anderson model, both with and without Hund's rule coupling, in the regime away from particle-hole symmetry. For the model with n=2 we deduce the renormalized parameters from numerical renormalization group calculations, and plot them as a function of the occupation at the impurity site, nd. From these we deduce the spin, orbital and charge susceptibilities, Wilson ratios and quasiparticle density of states at T=0, in the different parameter regimes, which gives a comprehensive overview of the low energy behavior of the model. We compare the difference in Kondo behaviors at the points where nd=1 and nd=2. One unexpected feature of the results is the suppression of the charge susceptibility in the strong correlation regime over the occupation number range 1 <nd <3.Comment: 9 pages, 17 figure

    Kufor-Rakeb syndrome, pallido-pyramidal degeneration with supranuclear upgaze paresis and dementia, maps to 1p36

    Get PDF
    Kufor-Rakeb syndrome is an autosomal recessive nigro-striatal-pallidal-pyramidal neurodegeneration. The onset is in the teenage years with clinical features of Parkinson’s disease plus spasticity, supranuclear upgaze paresis, and dementia. Brain scans show atrophy of the globus pallidus and pyramids and, later, widespread cerebral atrophy. We report linkage in Kufor- Rakeb syndrome to a 9 cM region of chromosome 1p36 delineated by the markers D1S436 and D1S2843, with a maximum multipoint lod score of 3.6. (J Med Genet 2001;38:680–682

    Observation of a subgap density of states in superconductor-normal metal bilayers in the Cooper limit

    Full text link
    We present transport and tunneling measurements of Pb-Ag bilayers with thicknesses, dPbd_{Pb} and dAgd_{Ag}, that are much less than the superconducting coherence length. The transition temperature, TcT_c, and energy gap, Δ\Delta, in the tunneling Density of States (DOS) decrease exponentially with dAgd_{Ag} at fixed dPbd_{Pb}. Simultaneously, a DOS that increases linearly from the Fermi energy grows and fills nearly 40% of the gap as TcT_c is 1/10 of TcT_c of bulk Pb. This behavior suggests that a growing fraction of quasiparticles decouple from the superconductor as TcT_c goes to 0. The linear dependence is consistent with the quasiparticles becoming trapped on integrable trajectories in the metal layer.Comment: 5 pages and 4 figures. This version is just the same as the old version except that we try to cut the unnecessary white space in the figures and make the whole paper look more compac
    corecore