2,247 research outputs found

    Application of Near Infrared Reflectance Spectroscopy (NIRS) for Macronutrients Analysis in Alfalfa (\u3ci\u3eMedicago sativa\u3c/i\u3e L.)

    Get PDF
    Near infrared reflectance spectroscopy was used to assess the mineral composition of alfalfa (Medicago sativa L.) as a tool for nutritional diagnosis. One hundred and ninety four (n = 194) samples of alfalfa from different locations representing a wide range of soils were used. Samples were reflectance scanned in a NIRS 6500 (NIRSystems, USA) instrument. The coefficients of determination (R2) of the regression estimate of the concentration of nitrogen, calcium, phosphorus, potassium, magnesium and sulphur and the errors in cross validation (SECV) were 0.93 (SECV: 1.6), 0.95 (SECV: 1.3), 0.93 (SECV: 1.9), 0.88 (SECV: 2.8), 0.82 (SECV: 1.9) and 0.75 (SECV: 4.7) respectively. The best NIRS predictions were obtained for calcium and nitrogen, meanwhile the poorest was obtained for sulphur

    In situ polymerization of soil organic matter by oxidative biomimetic catalysis.

    Get PDF
    Background: Agricultural practices that enhance organic matter content in soil can play a central role in sequestering soil organic carbon (SOC) and reducing greenhouse gases emissions. Methods: We used a water-soluble iron-porphyrin to catalyze directly in situ oxidative polymerization of soil organic matter in the presence of H2O2 oxidant, with the aim to enhance OC stabilization, and, consequently, reduce CO2 emissions from soil. The occurred SOC stabilization was assessed by monitoring soil aggregate stability, OC distribution in water-soluble aggregates, soil respiration, and extraction yields of humic and fulvic acids. Results: Soil treatment with H2O2 and iron-porphyrin increased the physical stability of water-stable soil aggregates and the total OC content in small aggregates, thereby suggesting that the catalyzed oxidative polymerization increased OC in soil and induced a soil physical improvement. The significant reduction of CO2 respired by the catalyst- and H2O2-treated soil indicated an enhanced resistance of polymerized SOC to microbial mineralization. The catalyzed oxidative polymerization of SOC also significantly decreased the extraction yields of humic and fulvic acids from soil. Conclusions: The oxidative catalytic technology described here may become an efficient agricultural practice for OC sequestration in soils and contribute to mitigate global changes

    The Role of Lichens, Mosses, and Vascular Plants in the Biodeterioration of Historic Buildings: A Review

    Get PDF
    Biodeterioration is defined as the alteration of a given substrate due to a combination of physical and chemical factors produced by living organisms when attached to such materials. This phenomenon attracts scientific research attention due to its risk in causing destruction to outdoor cultural rock heritage sites. In this review, an update on the state-of-art regarding the biodeterioration phenomenon is represented in order to highlight the type of colonizing vegetation and possible mechanisms behind the corresponding deterioration. For this reason, 62 articles with a focus on lichens, mosses, and higher plants were investigated by evaluating the role of construction materials and different plant species related to the hazard index. The results showed that trees and shrubs are the most harmful plant life forms, for example, Ficus carica, Ailanthus altissima, and Capparis spinosa, while regarding building materials, those characterized by high porosity, such as andesite and argillaceous limestone, are more vulnerable to plant colonization. Further studies are needed to examine in detail the relationship between colonizing organisms, intrinsic elements of the substrate, and external factors, as well as the refinement of measures to prevent and control colonization by plants

    Multistep, sequential control of the trafficking and function of the multiple sulfatase deficiency gene product, SUMF1 by PDI, ERGIC-53 and ERp44.

    Get PDF
    Sulfatase modifying factor 1 (SUMF1) encodes for the formylglicine generating enzyme, which activates sulfatases by modifying a key cysteine residue within their catalytic domains. SUMF1 is mutated in patients affected by multiple sulfatase deficiency, a rare recessive disorder in which all sulfatase activities are impaired. Despite the absence of canonical retention/retrieval signals, SUMF1 is largely retained in the endoplasmic reticulum (ER), where it exerts its enzymatic activity on nascent sulfatases. Part of SUMF1 is secreted and paracrinally taken up by distant cells. Here we show that SUMF1 interacts with protein disulfide isomerase (PDI) and ERp44, two thioredoxin family members residing in the early secretory pathway, and with ERGIC-53, a lectin that shuttles between the ER and the Golgi. Functional assays reveal that these interactions are crucial for controlling SUMF1 traffic and function. PDI couples SUMF1 retention and activation in the ER. ERGIC-53 and ERp44 act downstream, favoring SUMF1 export from and retrieval to the ER, respectively. Silencing ERGIC-53 causes proteasomal degradation of SUMF1, while down-regulating ERp44 promotes its secretion. When over-expressed, each of three interactors favors intracellular accumulation. Our results reveal a multistep control of SUMF1 trafficking, with sequential interactions dynamically determining ER localization, activity and secretion

    Hong-Ou-Mandel interference between independent III-V on silicon waveguide integrated lasers

    Get PDF
    The versatility of silicon photonic integrated circuits has led to a widespread usage of this platform for quantum information based applications, including Quantum Key Distribution (QKD). However, the integration of simple high repetition rate photon sources is yet to be achieved. The use of weak-coherent pulses (WCPs) could represent a viable solution. For example, Measurement Device Independent QKD (MDI-QKD) envisions the use of WCPs to distill a secret key immune to detector side channel attacks at large distances. Thus, the integration of III-V lasers on silicon waveguides is an interesting prospect for quantum photonics. Here, we report the experimental observation of Hong-Ou-Mandel interference with 46\pm 2% visibility between WCPs generated by two independent III-V on silicon waveguide integrated lasers. This quantum interference effect is at the heart of many applications, including MDI-QKD. Our work represents a substantial first step towards an implementation of MDI-QKD fully integrated in silicon, and could be beneficial for other applications such as standard QKD and novel quantum communication protocols.Comment: 5 pages, 3 figure

    MOBILITY AND BIOAVAILABILITY OF HEAVY METALS AND METALLOIDS IN SOIL ENVIRONMENTS

    Get PDF
    In soil environments, sorption/desorption reactions as well as chemical complexation with inorganic and organic ligands and redox reactions, both biotic and abiotic, are of great importance in controlling their bioavailability, leaching and toxicity. These reactions are affected by many factors such as pH, nature of the sorbents, presence and concentration of organic and inorganic ligands, including humic and fulvic acid, root exudates, microbial metabolites and nutrients. In this review, we highlight the impact of physical, chemical, and biological interfacial interactions on bioavailability and mobility of metals and metalloids in soil. Special attention is devoted to: i) the sorption/desorption processes of metals and metalloids on/from soil components and soils; ii) their precipitation and reduction-oxidation reactions in solution and onto surfaces of soil components; iii) their chemical speciation, fractionation and bioavailability
    • …
    corecore