1,216 research outputs found

    β-cell dysfunctional ERAD/ubiquitin/proteasome system in type 2 diabetes mediated by islet amyloid polypeptide-induced UCH-L1 deficiency.

    Get PDF
    ObjectiveThe islet in type 2 diabetes is characterized by β-cell apoptosis, β-cell endoplasmic reticulum stress, and islet amyloid deposits derived from islet amyloid polypeptide (IAPP). Toxic oligomers of IAPP form intracellularly in β-cells in humans with type 2 diabetes, suggesting impaired clearance of misfolded proteins. In this study, we investigated whether human-IAPP (h-IAPP) disrupts the endoplasmic reticulum-associated degradation/ubiquitin/proteasome system.Research design and methodsWe used pancreatic tissue from humans with and without type 2 diabetes, isolated islets from h-IAPP transgenic rats, isolated human islets, and INS 832/13 cells transduced with adenoviruses expressing either h-IAPP or a comparable expression of rodent-IAPP. Immunofluorescence and Western blotting were used to detect polyubiquitinated proteins and ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1) protein levels. Proteasome activity was measured in isolated rat and human islets. UCH-L1 was knocked down by small-interfering RNA in INS 832/13 cells and apoptosis was evaluated.ResultsWe report accumulation of polyubiquinated proteins and UCH-L1 deficiency in β-cells of humans with type 2 diabetes. These findings were reproduced by expression of oligomeric h-IAPP but not soluble rat-IAPP. Downregulation of UCH-L1 expression and activity to reproduce that caused by h-IAPP in β-cells induced endoplasmic reticulum stress leading to apoptosis.ConclusionsOur results indicate that defective protein degradation in β-cells in type 2 diabetes can, at least in part, be attributed to misfolded h-IAPP leading to UCH-L1 deficiency, which in turn further compromises β-cell viability

    Preparation and characterization of electrolytic alumina deposit on austenitic stainless steel

    Get PDF
    Conversion coating modified by alumina has been studied as a way for improving the resistance to thermal oxidation of an austenitic stainless steel. Conversion coating, characterized by a particular morphology and strong interfacial adhesion with the substrate, facilitate the electrochemical deposition of ceramic layers and enhance their adhesion to the substrate. The influence of the current density and treatment time on alumina deposit was studied using statistical experimental designs like Doehlert uniform shell design. After heating, coatings present a continuous composition gradient with refractory compounds at the surface. The behavior at high temperature (1000 8C) of the alumina coating was investigated. The presence of alumina increases the oxidation resistance of an austenitic stainless steel at 1000 8C. The morphology and the chemical composition of the deposit are analyzed. Results on the thermal stability of coating on austenitic stainless steel are presented

    Chemical Evolution of the Galactic Bulge as Derived from High-Resolution Infrared Spectroscopy of K and M Red Giants

    Get PDF
    We present chemical abundances in K and M red-giant members of the Galactic bulge derived from high-resolution infrared spectra obtained with the Phoenix spectrograph on Gemini-South. The elements studied are carbon, nitrogen, oxygen, sodium, titanium, and iron. The evolution of C and N abundances in the studied red-giants show that their oxygen abundances represent the original values with which the stars were born. Oxygen is a superior element for probing the timescale of bulge chemical enrichment via [O/Fe] versus [Fe/H]. The [O/Fe]-[Fe/H] relation in the bulge does not follow the disk relation, with [O/Fe] values falling above those of the disk. Titanium also behaves similarly to oxygen with respect to iron. Based on these elevated values of [O/Fe] and [Ti/Fe] extending to large Fe abundances, it is suggested that the bulge underwent a more rapid chemical enrichment than the halo. In addition, there are declines in both [O/Fe] and [Ti/Fe] in those bulge targets with the largest Fe abundances, signifying another source affecting chemical evolution: perhaps Supernovae of Type Ia. Sodium abundances increase dramatically in the bulge with increasing metallicity, possibly reflecting the metallicity dependant yields from supernovae of Type II, although Na contamination from H-burning in intermediate mass stars cannot be ruled out.Comment: ApJ in pres

    The CloudSME Simulation Platform and its Applications: A Generic Multi-cloud Platform for Developing and Executing Commercial Cloud-based Simulations

    Get PDF
    Simulation is used in industry to study a large variety of problems ranging from increasing the productivity of a manufacturing system to optimizing the design of a wind turbine. However, some simulation models can be computationally demanding and some simulation projects require time consuming experimentation. High performance computing infrastructures such as clusters can be used to speed up the execution of large models or multiple experiments but at a cost that is often too much for Small and Medium-sized Enterprises (SMEs). Cloud computing presents an attractive, lower cost alternative. However, developing a cloud-based simulation application can again be costly for an SME due to training and development needs, especially if software vendors need to use resources of different heterogeneous clouds to avoid being locked-in to one particular cloud provider. In an attempt to reduce the cost of development of commercial cloud-based simulations, the CloudSME Simulation Platform (CSSP) has been developed as a generic approach that combines an AppCenter with the workflow of the WS-PGRADE/gUSE science gateway framework and the multi-cloud-based capabilities of the CloudBroker Platform. The paper presents the CSSP and two representative case studies from distinctly different areas that illustrate how commercial multi-cloud-based simulations can be created

    Mechanics of Granular Materials (MGM)

    Get PDF
    The constitutive behavior of uncemented granular materials such as strength, stiffness, and localization of deformations are to a large extend derived from interparticle friction transmitted between solid particles and particle groups. Interparticle forces are highly dependent on gravitational body forces. At very low effective confining pressures, the true nature of the Mohr envelope, which defines the Mohr-Coulomb failure criterion for soils, as well as the relative contribution of each of non-frictional components to soil's shear strength cannot be evaluated in terrestrial laboratories. Because of the impossibility of eliminating gravitational body forces on earth, the weight of soil grains develops interparticle compressive stresses which mask true soil constitutive behavior even in the smallest samples of models. Therefore the microgravity environment induced by near-earth orbits of spacecraft provides unique experimental opportunities for testing theories related to the mechanical behavior of terrestrial granular materials. Such materials may include cohesionless soils, industrial powders, crushed coal, etc. This paper will describe the microgravity experiment, 'Mechanics of Granular Materials (MGM)', scheduled to be flown on Space Shuttle-MIR missions. The paper will describe the experiment's hardware, instrumentation, specimen preparation procedures, testing procedures in flight, as well as a brief summary of the post-mission analysis. It is expected that the experimental results will significantly improve the understanding of the behavior of granular materials under very low effective stress levels

    Enabling Cloud-based Computational Fluid Dynamics with a Platform-as-a-Service Solution

    Get PDF
    Computational Fluid Dynamics (CFD) is widely used in manufacturing and engineering from product design to testing. CFD requires intensive computational power and typically needs high performance computing to reduce potentially long experimentation times. Dedicated high performance computing systems are often expensive for small-to-medium enterprises (SMEs). Cloud computing claims to enable low cost access to high performance computing without the need for capital investment. The CloudSME Simulation Platform aims to provide a flexible and easy to use cloud-based Platform-as-a-Service (PaaS) technology that can enable SMEs to realize the benefits of high performance computing. Our Platform incorporates workflow management and multi-cloud implementation across various cloud resources. Here we present the components of our technology and experiences in using it to create a cloud-based version of the TransAT CFD software. Three case studies favourably compare the performance of a local cluster and two different clouds and demonstrate the viability of our cloud-based approach

    Time Correlation Functions of Three Classical Heisenberg Spins on an Isosceles Triangle and on a Chain: Strong Effects of Broken Symmetry

    Full text link
    At arbitrary temperature TT, we solve for the dynamics of single molecule magnets composed of three classical Heisenberg spins either on a chain with two equal exchange constants J1J_1, or on an isosceles triangle with a third, different exchange constant J2J_2. As T\rightrarrow\infty, the Fourier transforms and long-time asymptotic behaviors of the two-spin time correlation functions are evaluated exactly. The lack of translational symmetry on a chain or an isosceles triangle yields time correlation functions that differ strikingly from those on an equilateral trinagle with J1=J2J_1=J_2. At low TT, the Fourier transforms of the two autocorrelation functions with J1J2J_1\ne J_2 show one and four modes, respectively. For a semi-infinite J2/J1J_2/J_1 range, one mode is a central peak. At the origin of this range, this mode has a novel scaling form.Comment: 9 pages, 14 figures, accepted for publication in Phys. Rev.

    Chromosome Model reveals Dynamic Redistribution of DNA Damage into Nuclear Sub-domains

    Get PDF
    Several proteins involved in the response to DNA double strand breaks (DSB) form microscopically visible nuclear domains, or foci, after exposure to ionizing radiation. Radiation-induced foci (RIF) are believed to be located where DNA damage is induced. To test this assumption, we analyzed the spatial distribution of 53BP1, phosphorylated ATM and gammaH2AX RIF in cells irradiated with high linear energy transfer (LET) radiation. Since energy is randomly deposited along high-LET particle paths, RIF along these paths should also be randomly distributed. The probability to induce DSB can be derived from DNA fragment data measured experimentally by pulsed-field gel electrophoresis. We used this probability in Monte Carlo simulations to predict DSB locations in synthetic nuclei geometrically described by a complete set of human chromosomes, taking into account microscope optics from real experiments. As expected, simulations produced DNA-weighted random (Poisson) distributions. In contrast, the distributions of RIF obtained as early as 5 min after exposure to high LET (1 GeV/amu Fe) were non-random. This deviation from the expected DNA-weighted random pattern can be further characterized by relative DNA image measurements. This novel imaging approach shows that RIF were located preferentially at the interface between high and low DNA density regions, and were more frequent in regions with lower density DNA than predicted. This deviation from random behavior was more pronounced within the first 5 min following irradiation for phosphorylated ATM RIF, while gammaH2AX and 53BP1 RIF showed very pronounced deviation up to 30 min after exposure. These data suggest the existence of repair centers in mammalian epithelial cells. These centers would be nuclear sub-domains where DNA lesions would be collected for more efficient repair

    Magnetic and thermal properties of 4f-3d ladder-type molecular compounds

    Full text link
    We report on the low-temperature magnetic susceptibilities and specific heats of the isostructural spin-ladder molecular complexes L2_{2}[M(opba)]_{3\cdot xDMSOy\cdot yH2_{2}O, hereafter abbreviated with L2_{2}M3_{3} (where L = La, Gd, Tb, Dy, Ho and M = Cu, Zn). The results show that the Cu containing complexes (with the exception of La2_{2}Cu3_{3}) undergo long range magnetic order at temperatures below 2 K, and that for Gd2_{2}Cu3_{3} this ordering is ferromagnetic, whereas for Tb2_{2}Cu3_{3} and Dy2_{2}Cu3_{3} it is probably antiferromagnetic. The susceptibilities and specific heats of Tb2_{2}Cu3_{3} and Dy2_{2}Cu3_{3} above TCT_{C} have been explained by means of a model taking into account nearest as well as next-nearest neighbor magnetic interactions. We show that the intraladder L--Cu interaction is the predominant one and that it is ferromagnetic for L = Gd, Tb and Dy. For the cases of Tb, Dy and Ho containing complexes, strong crystal field effects on the magnetic and thermal properties have to be taken into account. The magnetic coupling between the (ferromagnetic) ladders is found to be very weak and is probably of dipolar origin.Comment: 13 pages, 15 figures, submitted to Phys. Rev.
    corecore