1,968 research outputs found

    Classification of radiating compact stars

    Get PDF
    A classification of compact stars, depending on the electron distribution in velocity space and the density profiles characterizing their magnetospheric plasma, is proposed. Fast pulsars, such as NP 0532, X-ray sources such as Sco-X1, and slow pulsars are suggested as possible evolutionary stages of similar objects. The heating mechanism of Sco-X1 is discussed in some detail

    Dynamics of resistive double tearing modes with broad linear spectra

    Get PDF
    The nonlinear evolution of resistive double tearing modes (DTMs) with safety factor values q=1 and q=3 is studied in a reduced cylindrical model of a tokamak plasma. We focus on cases where the resonant surfaces are a small distance apart. Recent numerical studies have shown that in such configurations high-m modes are strongly unstable. In this paper, it is first demonstrated that linear DTM theory predicts the dominance of high-m DTMs. A semi-empirical formula for estimating the poloidal mode number of the fastest growing mode, m_peak, is obtained from the existing linear theory. Second, using nonlinear simulations, it is shown that the presence of fast growing high-m modes leads to a rapid turbulent collapse in an annular region, whereby small magnetic island structures form. Furthermore, consideration is given to the evolution of low-m modes, in particular the global m=1 internal kink, which can undergo nonlinear driving through coupling to fast growing linear high-m DTMs. Factors influencing the details of the dynamics are discussed. These results may be relevant for the understanding of the magnetohydrodynamic (MHD) activity near the minimum of q and may thus be of interest to studies concerned with stability and confinement in advanced tokamaks.Comment: 11 pages, 10 figure

    Reduced magnetohydrodynamic theory of oblique plasmoid instabilities

    Full text link
    The three-dimensional nature of plasmoid instabilities is studied using the reduced magnetohydrodynamic equations. For a Harris equilibrium with guide field, represented by \vc{B}_o = B_{po} \tanh (x/\lambda) \hat{y} + B_{zo} \hat{z}, a spectrum of modes are unstable at multiple resonant surfaces in the current sheet, rather than just the null surface of the polodial field Byo(x)=Bpotanh(x/λ)B_{yo} (x) = B_{po} \tanh (x/\lambda), which is the only resonant surface in 2D or in the absence of a guide field. Here BpoB_{po} is the asymptotic value of the equilibrium poloidal field, BzoB_{zo} is the constant equilibrium guide field, and λ\lambda is the current sheet width. Plasmoids on each resonant surface have a unique angle of obliquity θarctan(kz/ky)\theta \equiv \arctan(k_z/k_y). The resonant surface location for angle θ\theta is x_s = - \lambda \arctanh (\tan \theta B_{zo}/B_{po}), and the existence of a resonant surface requires θ<arctan(Bpo/Bzo)|\theta| < \arctan (B_{po} / B_{zo}). The most unstable angle is oblique, i.e. θ0\theta \neq 0 and xs0x_s \neq 0, in the constant-ψ\psi regime, but parallel, i.e. θ=0\theta = 0 and xs=0x_s = 0, in the nonconstant-ψ\psi regime. For a fixed angle of obliquity, the most unstable wavenumber lies at the intersection of the constant-ψ\psi and nonconstant-ψ\psi regimes. The growth rate of this mode is γmax/ΓoSL1/4(1μ4)1/2\gamma_{\textrm{max}}/\Gamma_o \simeq S_L^{1/4} (1-\mu^4)^{1/2}, in which Γo=VA/L\Gamma_o = V_A/L, VAV_A is the Alfv\'{e}n speed, LL is the current sheet length, and SLS_L is the Lundquist number. The number of plasmoids scales as NSL3/8(1μ2)1/4(1+μ2)3/4N \sim S_L^{3/8} (1-\mu^2)^{-1/4} (1 + \mu^2)^{3/4}.Comment: 9 pages, 8 figures, to be published in Physics of Plasma

    Time dependent numerical model for the emission of radiation from relativistic plasma

    Full text link
    We describe a numerical model constructed for the study of the emission of radiation from relativistic plasma under conditions characteristic, e.g., to gamma-ray bursts (GRB's) and active galactic nuclei (AGN's). The model solves self consistently the kinetic equations for e^\pm and photons, describing cyclo-synchrotron emission, direct Compton and inverse Compton scattering, pair production and annihilation, including the evolution of high energy electromagnetic cascades. The code allows calculations over a wide range of particle energies, spanning more than 15 orders of magnitude in energy and time scales. Our unique algorithm, which enables to follow the particle distributions over a wide energy range, allows to accurately derive spectra at high energies, >100 \TeV. We present the kinetic equations that are being solved, detailed description of the equations describing the various physical processes, the solution method, and several examples of numerical results. Excellent agreement with analytical results of the synchrotron-SSC model is found for parameter space regions in which this approximation is valid, and several examples are presented of calculations for parameter space regions where analytic results are not available.Comment: Minor changes; References added, discussion on observational status added. Accepted for publication in Ap.

    Induced Compton Scattering in Gigahertz Peak Spectrum Sources

    Full text link
    We revisit the shocked shell model for the class of Active Galactic Nuclei known as Gigahertz Peak Spectrum sources, incorporating new observational data on the radiation brightness temperatures. We argue that in addition to free-free absorption, induced Compton scattering will also have an important effect in forming the ~GHz peak and in shaping the radio spectra that characterize these sources. Indeed, our arguments suggest that GPS sources may provide the first real evidence for the role of induced Compton scattering in extragalactic radio sources.Comment: 12 pages, 1 figure, AAS LaTeX style with epsf, to appear in ApJ Letter

    Radiation mechanisms and geometry of Cygnus X-1 in the soft state

    Full text link
    We present X-ray/gamma-ray spectra of Cyg X-1 observed during the transition from the hard to the soft state and in the soft state by ASCA, RXTE and OSSE in 1996 May and June. The spectra consist of a dominant soft component below ~2 keV and a power-law-like continuum extending to at least ~800 keV. We interpret them as emission from an optically-thick, cold accretion disc and from an optically-thin, non-thermal corona above the disc. A fraction f ~ 0.6 of total available power is dissipated in the corona. We model the soft component by multi-colour blackbody disc emission taking into account the torque-free inner-boundary condition. If the disc extends down to the minimum stable orbit, the ASCA/RXTE data yield the most probable black hole mass of about 10 solar masses and an accretion rate about 0.5 L_E/c^2, locating Cyg X-1 in the soft state in the upper part of the stable, gas-pressure dominated, accretion-disc solution branch. The spectrum of the corona is well modelled by repeated Compton scattering of seed photons from the disc off electrons with a hybrid, thermal/non-thermal distribution. The electron distribution can be characterized by a Maxwellian with an equilibrium temperature of kT ~ 30--50 keV and a Thomson optical depth of ~0.3 and a quasi-power-law tail. The compactness of the corona is between 2 and 7, and a presence of a significant population of electron-positron pairs is ruled out. We find strong signatures of Compton reflection from a cold and ionized medium, presumably an accretion disc, with an apparent reflector solid angle ~0.5--0.7. The reflected continuum is accompanied by a broad iron K-alpha line.Comment: 18 pages, 12 figures, 2 landscape tables in a separate file. Accepted to MNRA

    Coffee as a nutraceutical beverage

    Get PDF
    In a recent paper we found that coffee consumption was associated with a decreased risk of developing asymptomatic PAD in a selected population of pre-menopausal women (Mattioli, Migaldi, &amp; Farinetti, 2018). Women with high coffee consumption had a good adherence to Mediterranean Diet and high levels of physical activity suggesting a healthier lifestyle, a known factor of prevention of atherosclerosis
    corecore