1,223 research outputs found
Graviton loops and brane observables
We discuss how to consistently perform effective Lagrangian computations in
quantum gravity with branes in compact extra dimensions. A reparametrization
invariant and infrared finite result is obtained in a non trivial way. It is
crucial to properly account for brane fluctuations and to correctly identify
physical observables. Our results correct some confusing claims in the
literature. We discuss the implications of graviton loops on electroweak
precision observables and on the muon g-2 in models with large extra
dimensions. We model the leading effects, not controlled by effective field
theory, by introducing a hard momentum cut-off.Comment: 9 pages + 4 eps figures, JHEP style latex document. The paper is
composed by a theoretical part, followed (after page 21) by a
phenomenological part. v2: version published in JHEP, few typos corrected.
v3: few additional typos corrected in the Appendi
The Other Natural Two Higgs Doublet Model
We characterize models where electroweak symmetry breaking is driven by two
light Higgs doublets arising as pseudo-Nambu-Goldstone bosons of new dynamics
above the weak scale. They represent the simplest natural two Higgs doublet
alternative to supersymmetry. We construct their low-energy effective
Lagrangian making only few specific assumptions about the strong sector. These
concern their global symmetries, their patterns of spontaneous breaking and the
sources of explicit breaking. In particular we assume that all the explicit
breaking is associated with the couplings of the strong sector to the Standard
Model fields, that is gauge and (proto)-Yukawa interactions. Under those
assumptions the scalar potential is determined at lowest order by very few free
parameters associated to the top sector. Another crucial property of our
scenarios is the presence of a discrete symmetry, in addition to custodial
SO(4), that controls the -parameter. That can either be simple CP or a
that distinguishes the two Higgs doublets. Among various possibilities we study
in detail models based on SO(6)/SO(4) SO(2), focussing on their
predictions for the structure of the scalar spectrum and the deviations of
their couplings from those of a generic renormalizable two Higgs doublet model.Comment: 54 page
Gauge Threshold Corrections in Warped Geometry
We discuss the Kaluza-Klein threshold correction to low energy gauge
couplings in theories with warped extra-dimension, which might be crucial for
the gauge coupling unification when the warping is sizable. Explicit
expressions of one-loop thresholds are derived for generic 5D gauge theory on a
slice of AdS_5, where some of the bulk gauge symmetries are broken by orbifold
boundary conditions and/or by bulk Higgs vacuum values. Effects of the mass
mixing between the bulk fields with different orbifold parities are included as
such mixing is required in some class of realistic warped unification models.Comment: 33 pages, 1 figure, 6 tables, invited contribution to New Journal of
Physics Focus Issue on 'Extra Space Dimensions
Light custodians in natural composite Higgs models
We present a class of composite Higgs models arising from a warped extra
dimension that can satisfy all the electroweak precision tests in a significant
portion of their parameter space. A custodial symmetry plays a crucial role in
keeping the largest corrections to the electroweak observables below their
experimental limits. In these models the heaviness of the top quark is not only
essential to trigger the electroweak symmetry breaking, but it also implies
that the lowest top resonance and its custodial partners, the custodians, are
significantly lighter than the other resonances. These custodians are the
trademark of these scenarios. They are exotic colored fermions of
electromagnetic charges 5/3, 2/3 and -1/3, with masses predicted roughly in the
range 500-1500 GeV. We discuss their production and detection at the LHC.Comment: 23 pages, 2 figure
On Composite Two Higgs Doublet Models
We investigate composite two Higgs doublet models realized as pseudo
Goldstone modes, generated through the spontaneous breaking of a global
symmetry due to strong dynamic at the TeV scale. A detailed comparative survey
of two possible symmetry breaking patterns, SU(5) -> SU(4) x U(1) and SU(5) x
SU(4), is made. We point out choices for the Standard Model fermion
representations that can alleviate some phenomenological constraints, with
emphasis towards a simultaneous solution of anomalous Zb\bar{b} coupling and
Higgs mediated Flavor Changing Neutral Currents. We also write down the kinetic
lagrangian for several models leading to Two Higgs Doublets and identify the
anomalous contributions to the T parameter. Moreover, we describe a model based
on the breaking in which there is no tree-level breaking of
custodial symmetry, discussing also the possible embeddings for the fermion
fields.Comment: 17 pages. Mistake corrected, added one section on a T- and flavor
safe model based on SO(9)/SO(8). Matches published versio
Discovering the composite Higgs through the decay of a heavy fermion
A possible composite nature of the Higgs could be revealed at the early stage
of the LHC, by analyzing the channels where the Higgs is produced from the
decay of a heavy fermion. The Higgs production from a singly-produced heavy
bottom, in particular, proves to be a promising channel. For a value \lambda=3
of the Higgs coupling to a heavy bottom, for example, we find that, considering
a 125 GeV Higgs which decays into a pair of b-quarks, a discovery is possible
at the 8 TeV LHC with 30 fb^{-1} if the heavy bottom is lighter than roughly
530 GeV (while an observation is possible for heavy bottom masses up to 650
GeV). Such a relatively light heavy bottom is realistic in composite Higgs
models of the type considered and, up to now, experimentally allowed. At
\sqrt{s}=14 TeV the LHC sensitivity on the channel increases significantly.
With \lambda=3 a discovery can occur, with 100 fb^{-1}, for heavy bottom masses
up to 1040 GeV. In the case the heavy bottom was as light as 500 GeV, the 14
TeV LHC would be sensitive to the measure of the \lambda\ coupling in basically
the full range \lambda>1 predicted by the theory.Comment: 25 pp. v2: Minor changes. v3: Version accepted for publication in
JHEP. v4: typos fixe
S-particles at their naturalness limits
We draw attention on a particular configuration of supersymmetric particle
masses, motivated by naturalness and flavour considerations. All its relevant
phenomenological properties for the LHC are described in terms of a few
physical parameters, irrespective of the underlying theoretical model. This
allows a simple characterization of its main features, useful to define a
strategy for its discovery.Comment: 13 pages, 8 figures, added reference
Effective Action and Holography in 5D Gauge Theories
We apply the holographic method to 5D gauge theories on the warped interval.
Our treatment includes the scalars associated with the fifth gauge field
component, which appear as 4D Goldstone bosons in the holographic effective
action. Applications are considered to two classes of models in which these
scalars play an important role. In the Composite-Higgs (and/or Gauge-Higgs
Unification) scenario, the scalars are interpreted as the Higgs field and we
use the holographic recipe to compute its one-loop potential. In AdS/QCD
models, the scalars are identified with the mesons and we compute
holographically the Chiral Perturbation Theory Lagrangian up to p^4 order. We
also discuss, using the holographic perspective, the effect of including a
Chern-Simons term in the 5D gauge Lagrangian. We show that it makes a
Wess-Zumino-Witten term to appear in the holographic effective action. This is
immediately applied to AdS/QCD, where a Chern-Simons term is needed in order to
mimic the Adler-Bardeen chiral anomaly.Comment: 37 pages; v2, minor changes, one reference added; v3, minor
corrections, version published in JHE
Radius-dependent gauge unification in AdS5
We examine the relation of the 4-dimensional low energy coupling of bulk
gauge boson in a slice of AdS5 to the 5-dimensional fundamental couplings as a
function of the orbifold radius R. This allows us to address the gauge coupling
unification in AdS5 by means of the radius running as well as the conventional
momentum running. We then compute the radius dependence of 1-loop low energy
couplings in generic AdS5 theory with 4-dimensional supersymmetry, and discuss
the low energy predictions when the 5-dimensional couplings are assumed to be
unified.Comment: 11 pages, 2 figures, revtex, v3: analysis was generalized to
S^1/Z_2*Z_2 orbifoldin
- …
