164 research outputs found

    Efficient Enzymatic Preparation of Flavor Esters in Water

    Get PDF
    A straightforward biocatalytic method for the enzymatic preparation of different flavor esters starting from primary alcohols (e.g., isoamyl, n-hexyl, geranyl, cinnamyl, 2-phenethyl, and benzyl alcohols) and naturally available ethyl esters (e.g., formate, acetate, propionate, and butyrate) was developed. The biotransformations are catalyzed by an acyltransferase from Mycobacterium smegmatis (MsAcT) and proceeded with excellent yields (80-97%) and short reaction times (30-120 min), even when high substrate concentrations (up to 0.5 M) were used. This enzymatic strategy represents an efficient alternative to the application of lipases in organic solvents and a significant improvement compared with already known methods in terms of reduced use of organic solvents, paving the way to sustainable and efficient preparation of natural flavoring agents

    Today, in the endoscopist hands

    Get PDF
    Endoscopic submucosal dissection (ESD) was first described as a non-surgical promise for early gastric epithelial lesions

    Biotransformation with whole microbial systems in a continuous flow reactor : resolution of (RS)-flurbiprofen using Aspergillus oryzae by direct esterification with ethanol in organic solvent

    Get PDF
    Cell-bound lipases of dry mycelium of Aspergillus oryzae were used in organic solvent for the resolution of racemic flurbiprofen by direct esterification with ethanol in a flow-chemistry reactor. Under flow conditions a significant reduction of the reaction time and an increase of the enantioselectivity were achieved compared to the batch mode. Moreover, the process was implemented by adding an in-line purification step integrated with the racemization of the unreacted flurbiprofen directly into a polymer-supported resin

    Preparation of Sterically Demanding 2,2-Disubstituted-2-Hydroxy Acids by Enzymatic Hydrolysis

    Get PDF
    Preparation of optically-pure derivatives of 2-hydroxy-2-(3-hydroxyphenyl)-2-phenylacetic acid of general structure 2 was accomplished by enzymatic hydrolysis of the correspondent esters. A screening with commercial hydrolases using the methyl ester of 2-hydroxy-2-(3-hydroxyphenyl)-2-phenylacetic acid (1a) showed that crude pig liver esterase (PLE) was the only preparation with catalytic activity. Low enantioselectivity was observed with substrates 1a\u2013d, whereas PLE-catalysed hydrolysis of 1e proceeded with good enantioselectivity (E = 28), after optimization. Enhancement of the enantioselectivity was obtained by chemical re-esterification of enantiomerically enriched 2e, followed by sequential enzymatic hydrolysis with PLE. The preparation of optically-pure (S)-2e was validated on multi-milligram scale

    A new chemoenzymatic approach to the synthesis of Latanoprost and Bimatoprost

    Get PDF
    Bimatoprost (1) and Latanoprost (2) are prostaglandin analogues widely used for glaucoma treatment. We have developed a new chemoenzymatic synthesis for 1 and 2, which utilizes a highly stereoselective sequence of biotransformations catalyzed by enzymes belonging to a single microorganism (the yeast Pichia anomala). The original synthesis, starting from (-)-Corey lactone benzoate (3aR,4R,5R,6aS)-3, was modified by replacing three synthetic steps (Cdouble bond, longC reduction, stereoselective Cdouble bond, longO reduction and hydrolysis/deprotection of the benzoate ester) with a one-pot, three-enzymes reaction. The overall biotransformation gave good yields and it was highly stereoselective; noteworthy, by engineering the reaction medium, Cdouble bond, longC reduction could be modulated so that unsaturated (3aR,4R,5R,6aS,3\u2032S)-6 or saturated intermediate (3aR,4R,5R,6aS,3\u2032R)-7 could be preferentially obtained. \ua9 2014 Elsevier B.V. All rights reserved

    The semen microbiome and its relationship with local immunology and viral load in HIV infection

    Get PDF
    Semen is a major vector for HIV transmission, but the semen HIV RNA viral load (VL) only correlates moderately with the blood VL. Viral shedding can be enhanced by genital infections and associated inflammation, but it can also occur in the absence of classical pathogens. Thus, we hypothesized that a dysregulated semen microbiome correlates with local HIV shedding. We analyzed semen samples from 49 men who have sex with men (MSM), including 22 HIV-uninfected and 27 HIV-infected men, at baseline and after starting antiretroviral therapy (ART) using 16S rRNA gene-based pyrosequencing and quantitative PCR. We studied the relationship of semen bacteria with HIV infection, semen cytokine levels, and semen VL by linear regression, non-metric multidimensional scaling, and goodness-of-fit test. Streptococcus, Corynebacterium, and Staphylococcus were common semen bacteria, irrespective of HIV status. While Ureaplasma was the more abundant Mollicutes in HIV-uninfected men, Mycoplasma dominated after HIV infection. HIV infection was associated with decreased semen microbiome diversity and richness, which were restored after six months of ART. In HIV-infected men, semen bacterial load correlated with seven pro-inflammatory semen cytokines, including IL-6 (p = 0.024), TNF-α (p = 0.009), and IL-1b (p = 0.002). IL-1b in particular was associated with semen VL (r2 = 0.18, p = 0.02). Semen bacterial load was also directly linked to the semen HIV VL (r2 = 0.15, p = 0.02). HIV infection reshapes the relationship between semen bacteria and pro-inflammatory cytokines, and both are linked to semen VL, which supports a role of the semen microbiome in HIV sexual transmission

    The semen microbiome and its relationship with local immunology and viral load in HIV infection

    Get PDF
    Semen is a major vector for HIV transmission, but the semen HIV RNA viral load (VL) only correlates moderately with the blood VL. Viral shedding can be enhanced by genital infections and associated inflammation, but it can also occur in the absence of classical pathogens. Thus, we hypothesized that a dysregulated semen microbiome correlates with local HIV shedding. We analyzed semen samples from 49 men who have sex with men (MSM), including 22 HIV-uninfected and 27 HIV-infected men, at baseline and after starting antiretroviral therapy (ART) using 16S rRNA gene-based pyrosequencing and quantitative PCR. We studied the relationship of semen bacteria with HIV infection, semen cytokine levels, and semen VL by linear regression, non-metric multidimensional scaling, and goodness-of-fit test. Streptococcus, Corynebacterium, and Staphylococcus were common semen bacteria, irrespective of HIV status. While Ureaplasma was the more abundant Mollicutes in HIV-uninfected men, Mycoplasma dominated after HIV infection. HIV infection was associated with decreased semen microbiome diversity and richness, which were restored after six months of ART. In HIV-infected men, semen bacterial load correlated with seven pro-inflammatory semen cytokines, including IL-6 (p = 0.024), TNF-α (p = 0.009), and IL-1b (p = 0.002). IL-1b in particular was associated with semen VL (r(2)  = 0.18, p = 0.02). Semen bacterial load was also directly linked to the semen HIV VL (r(2) = 0.15, p = 0.02). HIV infection reshapes the relationship between semen bacteria and pro-inflammatory cytokines, and both are linked to semen VL, which supports a role of the semen microbiome in HIV sexual transmission
    • 

    corecore