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Abstract 

Cell-bound lipases of dry mycelium of Aspergillus oryzae were used in organic solvent for the 

resolution of racemic flurbiprofen by direct esterification with ethanol in a flow-chemistry reactor. 

Under flow conditions a significant reduction of the reaction time and an increase of the 

enantioselectivity were achieved compared to the batch mode. Moreover, the process was 

implemented by adding an in-line purification step integrated with the racemization of the unreacted 

flurbiprofen directly into a polymer-supported resin. 
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Introduction  

Carboxylesterases (mostly lipases) have been used in monophasic organic solution under controlled 

values of water activity (aw) for catalyzing ester formation; the strategies more frequently employed 

for shifting the equilibrium towards ester formation imply the use of interesterification or 

transesterification, because direct esterification is often hampered by water formation, which 

negatively influences the equilibrium.1 The use of cell-bound enzymes of different microorganisms 

has proved an effective method for direct esterification of different alcohols and carboxylic acids in 

organic solvent.2 Dry whole mycelia of filamentous eumycetes can be directly used as biocatalyst, 

showing few advantages, such as: high stability in organic solvents, high resistance to the 

inactivation due to free carboxylic acids (including acetic acid) and high molar conversions enabled 

by favourable partition of water.3 Previous observations suggested that the mycelium contributes 

marginally to the water take-up: rather than sequestrating water inside the cell wall, it seems that the 

mycelium provides a micro-environment where the water produced during the esterification is 



promptly removed.4 Furthermore, mycelial microorganisms can be employed without 

immobilization, because their morphological structure allows for easy filtration and re-utilization; 

this last feature favours simple set-up of continuous bioreactors. 

Direct esterification of racemic alcohols or carboxylic acids with dry mycelia of strains of 

Aspergillus oryzae and Rhizopus oryzae often resulted in an efficient kinetic resolution.5 For 

example, Aspergillus oryzae has been used in pure organic solvent for the resolution of (RS)-

flurbiprofen,6 displaying good enantioselectivity towards (R)-flurbiprofen and furnishing results 

competitive with the data obtained using commercial enzymes.7 However, the biotransformations 

showed limited productivity and space time yield due to substrate inhibition effects and low 

solubility of flurbiprofen in the solvents where the best results, in terms of activity and 

enantioselectivity, were observed (e.g. aliphatic hydrocarbons).6 Kinetic resolution of racemic 

flurbiprofen is attractive because (S)-flurbiprofen is a non-steroidal anti-inflammatory drug, 

whereas its R-enantiomer shows anticancer effects in vivo and in vitro.8 Moreover, as recently 

reviewed by Kourist and co-workers,9 despite the considerable number of biocatalytic routes 

developed so far for the production of (S)-profens, there is still room for improvement with the 

perspective of more efficient and sustainable processes. 

Flow reactors can dramatically improve the performances of lipase-catalyzed reactions.10 Recently, 

the kinetic resolution of flurbiprofen has been performed in a continuous flow reactor using an 

immobilized lipase B from Candida antarctica (Novozym 435®) allowing a significant reduction of 

the reaction time compared to the classical batch method.11 

In the present work, we have studied the use of dry mycelium of Aspergillus oryzae12 in an organic 

solvent for the resolution of racemic flurbiprofen in a continuous flow reactor, combining the 

advantages of an easy to produce (and use) biocatalyst with a process-intensification technology. 

The process was implemented by adding an in-line purification step integrated with the 

racemization of the unreacted flurbiprofen directly into a polymer-supported resin. 

 

Results and discussion  

The esterification reaction catalyzed by dry mycelia of Aspergillus oryzae was firstly performed in a 

batch mode using stoichiometric amounts of racemic flurbiprofen and ethanol in n-heptane at 50 

°C.13 The progress and stereobias of the reaction was monitored by chiral HPLC,14 which showed 

that after 8 hours the enantiomeric excess of (S)-flurbiprofen 1 was 22%, the enantiomeric excess of 

the product (R)-flurbiprofen ethyl ester 2 was 86% and the conversion was 20%.  

Flow experiments were initially focused on reaching a degree of conversion similar to the one 

obtained in the batch process.15 To this aim, a 10 mM solution of (RS)-flurbiprofen 1 in n-heptane 



containing 1 equiv of EtOH was flowed through a glass column loaded with dry mycelium of 

Aspergillus oryzae MIM (180 mg, Scheme 1). Temperature was kept constant at 50 °C, while flow 

rate, which sets the residence time, was varied and the best results are reported in Table 1.16 

 

 
Scheme 1. Esterification of (RS)-flurbiprofen 1 with EtOH using mycelium of Aspergillus oryzae MIM in a continuous flow reactor. 

 
Table 1. Screening of different flow rates in the enantioselective esterification of (RS)-flurbiprofen 1 with EtOH using 

Aspergillus oryzae MIM in a continuous flow reactor. 

Entry Time (min) Flow rate (µl/min) Molar conversion (%)a ees(%)b eep(%)b Ea r (µmol/min g)c 

Batch 1440 - 20 22 86 16 0.14 

1 15  46 58 90 66 18 1.48 

2 8  85 45 66 82 19 2.12 

3 6.5  105 28 34 88 21 1.63 

4 5 137 19 20 88 19 1.44 

Reaction conditions: 10 mM solution of (RS)-flurbiprofen in n-heptane, 1 equiv of EtOH, 180 mg of lyophilized mycelium of Aspergillus oryzae 

MIM, T = 50 °C. aCalculated according to Ref. 17. bDetermined by chiral HPLC.14 cCalculated according to Ref. 18. 

 

The data reported in Table 1 indicate that the use of a flow reactor dramatically reduced the reaction 

time and slightly increased the enantioselectivity. In fact, a 19% conversion was reached in only 5 

min of residence time with 88% enantiomeric excess (ee) of the product (Table 1, entry 4). On the 

other hand, a residence time of 15 min (entry 1) resulted in a marked increase of the conversion 

(58%) allowing, in this case, the obtainment of (S)-flurbiprofen with a good enantiomeric excess 

(90% ee). Therefore, by simply modulating the flow rate, optically enriched substrate [(S)-

flurbiprofen, entry 1] or product [(R)-flurbiprofen ethyl ester, entries 3 and 4] could be obtained.  

The specific reaction rate (r) of the batch reaction was 0.14 µmol/min g, whereas in the flow 

process, using the conditions reported in Table 1, entry 4, which provided a similar degree of 

conversion of the batch reaction, the specific reaction rate was 1.44 µmol/min g, that means an 

increase of the productivity of about 10 times. It must be noted that the resolution is obtained 

through direct esterification with formation of water, which can affect the equilibrium of the 

reaction and, consequently, the overall stereoselectivity. Therefore, experiments in presence of 

molecular sieves were carried out. For this purpose, we prepared a mixed bed column filled with an 

equal weight of lyophilized mycelium of Aspergillus oryzae MIM and molecular sieves. Keeping 



constant the temperature and the residence time at 6.5 min, it was possible to observe an increase of 

the molar conversion from 28% (Table 1, entry 3) to 38%(Table 2, entry 1). Different temperatures 

were then tested (Table 2, entries 2-5). A slight increase of both the molar conversion and ee of the 

product was achieved working at 60 °C (Table 2, entry 4). No significant differences in the 

conversion or in the ee of the product were observed by increasing the equivalents of EtOH. 

 
Table 2. Screening of different temperatures in the enantioselective esterification of (RS)-flurbiprofen with EtOH using 

Aspergillus oryzae MIM in presence of molecular sieves in a continuous flow reactor. 

Entry T (°C) Molar conversion (%)a ees(%)b eep(%)b Ea r (µmol/min g)c 

1 50 38 54 88 26 2.45 

2 30 30 38 88 22 1.93 

3 40 32 42 88 23 2.06 

4 60 41 62 90 35 2.64 

5 70 42 60 84 21 2.70 

Reaction conditions: 10 mM solution of (RS)-flurbiprofen in n-heptane, 1 equiv of EtOH, 180 mg of lyophilized mycelium of Aspergillus oryzae 

MIM and 180 mg of molecular sieves (powder, 4 Å). Residence time: 6.5 min; flow rate 116 µL/min. aCalculated according to Ref. 17. bDetermined 

by chiral HPLC.14 cCalculated according to Ref. 18. 

 

The addition of molecular sieves generally increased the specific reaction rates and 

enantioselectivity; under the best conditions (Table 2, entry 4), the specific rate was 19 times higher 

than the one registered in the batch mode and the enantiomeric ratio (E) was increased from 16 to 

35.  

Moreover, the stability of the lyophilized mycelia was evaluated. The thermal stability was already 

demonstrated by us in a previous work,3a whereas the mycelia stability over continuous work was 

checked by performing the resolution under the conditions reported in table 2, entry 4, and running 

the reactor for 3 hours. Samples were collected and analyzed every hour and it was verified the 

matching of the results obtained both in term of conversion and enantiomeric purity of substrate and 

product. 

As previously described,11 the overall process can be implemented by adding an in-line purification 

step of the exiting solution, consisting in a catch and release protocol, which allows the easy 

separation and recovery of both (S)-flurbiprofen and (R)-flurbiprofen ethyl ester. Following the 

reported procedure, the unreacted carboxylic acid was trapped by flowing the exiting solution into a 

column containing the polymer-supported base Amberlyst A21 (Scheme 2). To further improve the 

process, the racemization of the trapped (S)-flurbiprofen 1 was included. The complete racemization 

was achieved by filling the column with a 10% solution of DBU in n-heptane (prepared through 

dilution of the DBU charged in one injection loop with the n-heptane flow stream) and, after 



stopping the flow stream, heating the column at 115 °C for 1 h. Lower concentration of DBU did 

not allow the complete racemization of the trapped acid. The column was then washed with n-

heptane for 10 min at a total flow rate of 300 µL/min, and subsequently, flurbiprofen was released 

with a 5% solution of AcOH in n-heptane and analyzed by chiral HPLC. 

 

 
Scheme 2. Schematic representation of the overall process. 

 

Conclusion 

Dry mycelia of Aspergillus oryzae can be effectively used for enantioselective esterification of 

racemic flurbiprofen in organic solvent in a flow reactor. The procedure here reported appears to be 

notably simple because dry mycelium can be directly used in the continuous reactor without 

immobilization. To the best of our knowledge, this is the first application of microbial whole cells 

as an enantioselective biocatalyst in a continuous flow reactor. Moreover, as previously observed in 

the kinetic resolution of flurbiprofen using of a commercially available immobilized lipase B from 

Candida antarctica,11 the use of a continuous flow reactor allows a significant reduction of the 

reaction time compared to the classical batch method and dramatically improved the productivity of 

the batch biotransformation, with beneficial effects also on the enantioselectivity.  
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