412 research outputs found
Towards a synthetic tutor assistant: The EASEL project and its architecture
Robots are gradually but steadily being introduced in our daily lives. A paramount application is that of education, where robots can assume the role of a tutor, a peer or simply a tool to help learners in a specific knowledge domain. Such endeavor posits specific challenges: affective social behavior, proper modelling of the learner’s progress, discrimination of the learner’s utterances, expressions and mental states, which, in turn, require an integrated architecture combining perception, cognition and action. In this paper we present an attempt to improve the current state of robots in the educational domain by introducing the EASEL EU project. Specifically, we introduce the EASEL’s unified robot architecture, an innovative Synthetic Tutor Assistant (STA) whose goal is to interactively guide learners in a science-based learning paradigm, allowing us to achieve such rich multimodal interactions
Plant MYB Transcription Factors: Their Role in Drought Response Mechanisms
Water scarcity is one of the major causes of poor plant performance and limited
crop yields worldwide and it is the single most common cause of severe food shortage in
developing countries. Several molecular networks involved in stress perception, signal
transduction and stress responses in plants have been elucidated so far. Transcription
factors are major players in water stress signaling. In recent years, different MYB
transcription factors, mainly in Arabidopsis thaliana (L.) Heynh. but also in some crops,
have been characterized for their involvement in drought response. For some of them there
is evidence supporting a specific role in response to water stress, such as the regulation of
stomatal movement, the control of suberin and cuticular waxes synthesis and the regulation
of flower development. Moreover, some of these genes have also been characterized for
their involvement in other abiotic or biotic stresses, an important feature considering that in
nature, plants are often simultaneously subjected to multiple rather than single environmental
perturbations. This review summarizes recent studies highlighting the role of the MYB family
of transcription factors in the adaptive responses to drought stress. The practical application
value of MYBs in crop improvement, such as stress tolerance engineering, is also discussed
Occurrence of spontaneous periodontal disease in the SAMP1/YitFc murine model of Crohn disease
BACKGROUND:
Oral involvement is often associated with inflammatory bowel disease (IBD). Recent evidence suggests a high incidence of periodontal disease in patients with Crohn disease (CD). To the best of the authors' knowledge, no animal model of IBD that displays associated periodontal disease was reported previously. The aim of this study is to investigate the occurrence and progression of periodontal disease in SAMP1/YitFc (SAMP) mice that spontaneously develop a CD-like ileitis. In addition, the temporal correlation between the onset and progression of periodontal disease and the onset of ileitis in SAMP mice was studied.
METHODS:
At different time points, SAMP and parental AKR/J (AKR) control mice were sacrificed, and mandibles were prepared for stereomicroscopy and histology. Terminal ilea were collected for histologic assessment of inflammation score. Periodontal status, i.e., alveolar bone loss (ABL) and alveolar bone crest, was examined by stereomicroscopy and histomorphometry, respectively.
RESULTS:
ABL increased in both strains with age. SAMP mice showed greater ABL compared with AKR mice by 12 weeks of age, with maximal differences observed at 27 weeks of age. AKR control mice did not show the same severity of periodontal disease. Interestingly, a strong positive correlation was found between ileitis severity and ABL in SAMP mice, independent of age.
CONCLUSIONS:
The present results demonstrate the occurrence of periodontal disease in a mouse model of progressive CD-like ileitis. In addition, the severity of periodontitis strongly correlated with the severity of ileitis, independent of age, suggesting that common pathogenic mechanisms, such as abnormal immune response and dysbiosis, may be shared between these two phenotypes
Extrados Strengthening of Single-Leaf Vaults Against Seismic Actions
Single-leaf vaults are acknowledged among the most vulnerable components of historical masonry constructions with respect to earthquake loads, particularly when featuring large span to thickness ratios, as in the case of single leaf covering the main nave of churches. These elements often require structural strengthening against seismic actions. In this paper, two different extradostechniques are tested: lightweight plywood restraining elements and FRP laminates embedded in a lime mortar layer. The techniques are tested on single leaf vaults having a very unfavorable span to thickness ratio.
A previous study on less slender vaults, showed that lightweight plywood centerings, applying passive confinement to the vault extrados, inhibit the onset of the typical four-hinges failure mechanism. This lightweight, dry solution can be easily prefabricated, transferred and assembled at the construction site. The technique is reversible and fully compliant with the major preservation principles. FRP is also effective against the onset of the failure mechanism but entails larger deformations of the retrofitted vault, which may be detrimental in the case of possible decorations. The solution requires special man labor to ensure correct smoothening and cleaning of the vault extrados and to trigger effective bond between the mortar and the vault extrados. Both solutions are shown to enable small relative displacements of the vault springing, which may follow the deformation of possible internal ties.
The effectiveness of these retrofit techniques was comparatively verified through experimental tests on single-leaf barrel vault stripes at 1:2 scale subjected to cyclic distributed unsymmetrical loads and through comparison with the seismic response of a reference unreinforced single-leaf vault
Characterization of the cork oak transcriptome dynamics during acorn development
Background: Cork oak (Quercus suber L.) has a natural distribution across western Mediterranean regions and is a keystone forest tree species in these ecosystems. The fruiting phase is especially critical for its regeneration but the molecular mechanisms underlying the biochemical and physiological changes during cork oak acorn development are poorly understood. In this study, the transcriptome of the cork oak acorn, including the seed, was characterized in five stages of development, from early development to acorn maturation, to identify the dominant processes in each stage and reveal transcripts with important functions in gene expression regulation and response to water.
Results: A total of 80,357 expressed sequence tags (ESTs) were de novo assembled from RNA-Seq libraries representative of the several acorn developmental stages. Approximately 7.6 % of the total number of transcripts present in Q. suber transcriptome was identified as acorn specific. The analysis of expression profiles during development returned 2,285 differentially expressed (DE) transcripts, which were clustered into six groups. The stage of development corresponding to the mature acorn exhibited an expression profile markedly different from other stages. Approximately 22 % of the DE transcripts putatively code for transcription factors (TF) or transcriptional regulators, and were found almost equally distributed among the several expression profile clusters, highlighting their major roles in controlling the whole developmental process. On the other hand, carbohydrate metabolism, the biological pathway most represented during acorn development, was especially prevalent in mid to late stages as evidenced by enrichment analysis. We further show that genes related to response to water, water deprivation and transport were mostly represented during the early (S2) and the last stage (S8) of acorn development, when tolerance to water desiccation is possibly critical for acorn viability.
Conclusions: To our knowledge this work represents the first report of acorn development transcriptomics in oaks. The obtained results provide novel insights into the developmental biology of cork oak acorns, highlighting transcripts putatively involved in the regulation of the gene expression program and in specific processes likely essential for adaptation. It is expected that this knowledge can be transferred to other oak species of great ecological value.Fundação para a Ciência e a Tecnologi
Previous Crop Impacts Winter Wheat Sowing Dates, Available Water at Sowing, and Grain Yield
Cropping systems choices can directly affect the sowing date for winter wheat, which is among the most important variables that determine attainable yields in the U.S. Central Great Plains. Our objective was to investigate the effect of the previous crop on winter wheat grain yield through the modulation of sowing date and its impact on plant available water at sowing, and temperatures during the critical period for yield determination. A no-tillage rainfed field experiment was established in 2019 at Ashland Bottoms, KS. Winter wheat was sown either after summer fallow, full-season soybean, double-cropped soybean, or corn—thus, resulting in a range in sowing dates of 270–326 days of the year (September 27 to November 22). The optimum sowing date for the site based on grain yield was estimated at day of year 296 ± 5 (October 18 to 28). Winter wheat after summer fallow and after a fullseason soybean crop resulted in the greatest yields, whether sown at the optimum date or slightly later than optimum. Winter wheat yield was positively related to plant available water at sowing. Later sowing dates were most likely to reduce plant available water at sowing, and could delay wheat’s development resulting in higher temperatures occurring during the critical period for yield determination (i.e., the days surrounding anthesis). Later sowing also shortened grain filling duration due to an overall later cycle and elevated temperatures. Thus, adjusting winter wheat sowing dates is the first step that determines the crop’s yield potential through improved plant available water at sowing, and reduced temperatures during the critical period for yield determination. When following a summer crop, winter wheat should be sown as soon as the previous crop is harvested to try to mitigate these negative effects of late sowing
Genome-Wide Identification of R2R3-MYB Genes and Expression Analyses During Abiotic Stress in
The R2R3-MYB is one of the largest families of transcription factors, which have been implicated in multiple biological processes. There is great diversity in the number of R2R3-MYB genes in different plants. However, there is no report on genome-wide characterization of this gene family in cotton. In the present study, a total of 205 putative R2R3-MYB genes were identified in cotton D genome (Gossypium raimondii), that are much larger than that found in other cash crops with fully sequenced genomes. These GrMYBs were classified into 13 groups with the R2R3-MYB genes from Arabidopsis and rice. The amino acid motifs and phylogenetic tree were predicted and analyzed. The sequences of GrMYBs were distributed across 13 chromosomes at various densities. The results showed that the expansion of the G. Raimondii R2R3-MYB family was mainly attributable to whole genome duplication and segmental duplication. Moreover, the expression pattern of 52 selected GrMYBs and 46 GaMYBs were tested in roots and leaves under different abiotic stress conditions. The results revealed that the MYB genes in cotton were differentially expressed under salt and drought stress treatment. Our results will be useful for determining the precise role of the MYB genes during stress responses with crop improvement
Promises and trust in human–robot interaction
Abstract Understanding human trust in machine partners has become imperative due to the widespread use of intelligent machines in a variety of applications and contexts. The aim of this paper is to investigate whether human-beings trust a social robot—i.e. a human-like robot that embodies emotional states, empathy, and non-verbal communication—differently than other types of agents. To do so, we adapt the well-known economic trust-game proposed by Charness and Dufwenberg (2006) to assess whether receiving a promise from a robot increases human-trust in it. We find that receiving a promise from the robot increases the trust of the human in it, but only for individuals who perceive the robot very similar to a human-being. Importantly, we observe a similar pattern in choices when we replace the humanoid counterpart with a real human but not when it is replaced by a computer-box. Additionally, we investigate participants’ psychophysiological reaction in terms of cardiovascular and electrodermal activity. Our results highlight an increased psychophysiological arousal when the game is played with the social robot compared to the computer-box. Taken all together, these results strongly support the development of technologies enhancing the humanity of robots
Critical role of endothelial P-selectin glycoprotein ligand 1 in chronic murine ileitis
L-selectin ligands might be relevant for inflammatory cell trafficking into the small intestine in a spontaneous model of chronic ileitis (i.e., SAMP1/YitFc mice). Immunoblockade of peripheral node addressin or mucosal addressin cell adhesion molecule 1 failed to ameliorate ileitis, whereas P-selectin glycoprotein ligand 1 (PSGL-1) neutralization attenuated both the adoptively transferred and spontaneous disease. PSGL-1 was detected in venules of mesenteric lymph node and small intestine by immunohistochemistry and confirmed by real-time reverse transcription polymerase chain reaction and flow cytometry. In addition, reconstitution of wild-type mice with PSGL-1−/− bone marrow demonstrated that PSGL-1 messenger RNA and PSGL-1 protein expression remained on endothelium, localized within mesenteric lymph node and small intestine. Endothelial PSGL-1 bound P-selectin–IgG and its blockade or genetic deletion altered the recruitment of lymphocytes to the small intestine, as revealed by intravital microscopy and homing studies. Endothelial expression of PSGL-1 adds a new dimension to the various cellular interactions involved in small intestinal recruitment. Thus, the multiple roles of PSGL-1 may explain why targeting this single adhesion molecule results in attenuation of chronic murine ileitis, a disease previously resistant to antiadhesion molecule strategies
- …
