2,764 research outputs found
The Effects of Stacking on the Configurations and Elasticity of Single Stranded Nucleic Acids
Stacking interactions in single stranded nucleic acids give rise to
configurations of an annealed rod-coil multiblock copolymer. Theoretical
analysis identifies the resulting signatures for long homopolynucleotides: A
non monotonous dependence of size on temperature, corresponding effects on
cyclization and a plateau in the extension force law. Explicit numerical
results for poly(dA) and poly(rU) are presented.Comment: 4 pages and 2 figures. Accepted in Phys. Rev. E Rapid Com
Comparison of the mean photospheric magnetic field and the interplanetary magnetic field
Polarity comparison of solar magnetic field and interplanetary magnetic fiel
Shock formation and the ideal shape of ramp compression waves
We derive expressions for shock formation based on the local curvature of the
flow characteristics during dynamic compression. Given a specific ramp adiabat,
calculated for instance from the equation of state for a substance, the ideal
nonlinear shape for an applied ramp loading history can be determined. We
discuss the region affected by lateral release, which can be presented in
compact form for the ideal loading history. Example calculations are given for
representative metals and plastic ablators. Continuum dynamics (hydrocode)
simulations were in good agreement with the algebraic forms. Example
applications are presented for several classes of laser-loading experiment,
identifying conditions where shocks are desired but not formed, and where long
duration ramps are desired
Estimating adolescent sleep patterns: parent reports versus adolescent self-report surveys, sleep diaries, and actigraphy
In research and clinical contexts, parent reports are often used to gain information about the sleep patterns of their adolescents; however, the degree of concordance between parent reports and adolescent-derived measures is unclear. The present study compares parent estimates of adolescent sleep patterns with adolescent self-reports from surveys and sleep diaries, together with actigraphy.
Methods: A total of 308 adolescents (59% male) aged 13–17 years completed a school sleep habits survey during class time at school, followed by a 7-day sleep diary and wrist actigraphy. Parents completed the Sleep, Medical, Education and Family History Survey.
Results: Parents reported an idealized version of their adolescent’s sleep, estimating significantly earlier bedtimes on both school nights and weekends, significantly later wake times on weekends, and significantly more sleep than either the adolescent self-reported survey, sleep diary, or actigraphic estimates.
Conclusion: Parent reports indicate that the adolescent averages a near-optimal amount of sleep on school nights and a more than optimal amount of sleep on weekends. However, adolescent-derived averages indicate patterns of greater sleep restriction. These results illustrate the importance of using adolescent-derived estimates of sleep patterns in this age group and the importance of sleep education for both adolescents and their parents
Detection of (1,3)-β-d-Glucan in Cerebrospinal Fluid in Histoplasma Meningitis
The diagnosis of central nervous system (CNS) histoplasmosis is often difficult. Although cerebrospinal fluid (CSF) (1,3)-β-d-glucan (BDG) is available as a biological marker for the diagnosis of fungal meningitis, there are limited data on its use for the diagnosis of Histoplasma meningitis. We evaluated CSF BDG detection, using the Fungitell assay, in patients with CNS histoplasmosis and controls. A total of 47 cases and 153 controls were identified. The control group included 13 patients with a CNS fungal infection other than histoplasmosis. Forty-nine percent of patients with CNS histoplasmosis and 43.8% of controls were immunocompromised. The median CSF BDG level was 85 pg/ml for cases, compared to <31 pg/ml for all controls (P < 0.05) and 82 pg/ml for controls with other causes of fungal meningitis (P = 0.27). The sensitivity for detection of BDG in CSF was 53.2%, whereas the specificity was 86.9% versus all controls and 46% versus other CNS fungal infections. CSF BDG levels of ≥80 pg/ml are neither sensitive nor specific to support a diagnosis of Histoplasma meningitis
Monitoring of Tumor Promotion and Progression in a Mouse Model of Inflammation-Induced Colon Cancer with Magnetic Resonance Colonography
AbstractEarly detection of precancerous tissue has significantly improved survival of most cancers including colorectal cancer (CRC). Animal models designed to study the early stages of cancer are valuable for identifying molecular events and response indicators that correlate with the onset of disease. The goal of this work was to investigate magnetic resonance (MR) colonography in a mouse model of CRC on a clinical MR imager. Mice treated with azoxymethane and dextran sulfate sodium were imaged by serial MR colonography (MRC) from initiation to euthanasia. Magnetic resonance colonography was obtained with both T1- and T2-weighted images after administration of a Fluorinert enema to remove residual luminal signal and intravenous contrast to enhance the colon wall. Individual tumor volumes were calculated and validated ex vivo. The Fluorinert enema provided a clear differentiation of the lumen of the colon from the mucosal lining. Inflammation was detected 3 days after dextran sulfate sodium exposure and subsided during the next week. Tumors as small as 1.2 mm3 were detected and as early as 29 days after initiation. Individual tumor growths were followed over time, and tumor volumes were measured by MR imaging correlated with volumes measured ex vivo. The use of a Fluorinert enema during MRC in mice is critical for differentiating mural processes from intraluminal debris. Magnetic resonance colonography with Fluorinert enema and intravenous contrast enhancement will be useful in the study of the initial stages of colon cancer and will reduce the number of animals needed for preclinical trials of prevention or intervention
Micro-fabrication of Carbon Structures by Pattern Miniaturization in Resorcinol-Formaldehyde Gel
A simple and novel method to fabricate and miniaturize surface and
sub-surface micro-structures and micro-patterns in glassy carbon is proposed
and demonstrated. An aqueous resorcinol-formaldehyde (RF) sol is employed for
micro-molding of the master-pattern to be replicated, followed by controlled
drying and pyrolysis of the gel to reproduce an isotropically shrunk replica in
carbon. The miniaturized version of the master-pattern thus replicated in
carbon is about one order of magnitude smaller than original master by
repeating three times the above cycle of molding and drying. The
micro-fabrication method proposed will greatly enhance the toolbox for a facile
fabrication of a variety of Carbon-MEMS and C-microfluidic devices.Comment: 16 pages, 5 figure
- …
