1,842 research outputs found

    Look before you Hop: Conversational Question Answering over Knowledge Graphs Using Judicious Context Expansion

    No full text
    Fact-centric information needs are rarely one-shot; users typically ask follow-up questions to explore a topic. In such a conversational setting, the user's inputs are often incomplete, with entities or predicates left out, and ungrammatical phrases. This poses a huge challenge to question answering (QA) systems that typically rely on cues in full-fledged interrogative sentences. As a solution, we develop CONVEX: an unsupervised method that can answer incomplete questions over a knowledge graph (KG) by maintaining conversation context using entities and predicates seen so far and automatically inferring missing or ambiguous pieces for follow-up questions. The core of our method is a graph exploration algorithm that judiciously expands a frontier to find candidate answers for the current question. To evaluate CONVEX, we release ConvQuestions, a crowdsourced benchmark with 11,200 distinct conversations from five different domains. We show that CONVEX: (i) adds conversational support to any stand-alone QA system, and (ii) outperforms state-of-the-art baselines and question completion strategies

    Bragg Polaritons: Strong Coupling and Amplification in an Unfolded Microcavity

    Full text link
    Periodic incorporation of quantum wells inside a one--dimensional Bragg structure is shown to enhance coherent coupling of excitons to the electromagnetic Bloch waves. We demonstrate strong coupling of quantum well excitons to photonic crystal Bragg modes at the edge of the photonic bandgap, which gives rise to mixed Bragg polariton eigenstates. The resulting Bragg polariton branches are in good agreement with the theory and allow demonstration of Bragg polariton parametric amplification.Comment: 4 pages, 4 figure

    Energetics and Vibrational States for Hydrogen on Pt(111)

    Get PDF
    We present a combination of theoretical calculations and experiments for the low-lying vibrational excitations of H and D atoms adsorbed on the Pt(111) surface. The vibrational band states are calculated based on the full three-dimensional adiabatic potential energy surface obtained from first principles calculations. For coverages less than three quarters of a monolayer, the observed experimental high-resolution electron peaks at 31 and 68meV are in excellent agreement with the theoretical transitions between selected bands. Our results convincingly demonstrate the need to go beyond the local harmonic oscillator picture to understand the dynamics of this system.Comment: In press at Phys. Rev. Lett - to appear in April 200

    Spontaneous Polarisation Build up in a Room Temperature Polariton Laser

    Full text link
    We observe the build up of strong (~50%) spontaneous vector polarisation in emission from a GaN-based polariton laser excited by short optical pulses at room temperature. The Stokes vector of emitted light changes its orientation randomly from one excitation pulse to another, so that the time-integrated polarisation remains zero. This behaviour is completely different to any previous laser. We interpret this observation in terms of the spontaneous symmetry breaking in a Bose-Einstein condensate of exciton-polaritons

    Decay of metastable phases in a model for the catalytic oxidation of CO

    Full text link
    We study by kinetic Monte Carlo simulations the dynamic behavior of a Ziff-Gulari-Barshad model with CO desorption for the reaction CO + O \to CO2_2 on a catalytic surface. Finite-size scaling analysis of the fluctuations and the fourth-order order-parameter cumulant show that below a critical CO desorption rate, the model exhibits a nonequilibrium first-order phase transition between low and high CO coverage phases. We calculate several points on the coexistence curve. We also measure the metastable lifetimes associated with the transition from the low CO coverage phase to the high CO coverage phase, and {\it vice versa}. Our results indicate that the transition process follows a mechanism very similar to the decay of metastable phases associated with {\it equilibrium} first-order phase transitions and can be described by the classic Kolmogorov-Johnson-Mehl-Avrami theory of phase transformation by nucleation and growth. In the present case, the desorption parameter plays the role of temperature, and the distance to the coexistence curve plays the role of an external field or supersaturation. We identify two distinct regimes, depending on whether the system is far from or close to the coexistence curve, in which the statistical properties and the system-size dependence of the lifetimes are different, corresponding to multidroplet or single-droplet decay, respectively. The crossover between the two regimes approaches the coexistence curve logarithmically with system size, analogous to the behavior of the crossover between multidroplet and single-droplet metastable decay near an equilibrium first-order phase transition.Comment: 27 pages, 22 figures, accepted by Physical Review

    The Static and Dynamic Lattice Changes Induced by Hydrogen Adsorption on NiAl(110)

    Full text link
    Static and dynamic changes induced by adsorption of atomic hydrogen on the NiAl(110) lattice at 130 K have been examined as a function of adsorbate coverage. Adsorbed hydrogen exists in three distinct phases. At low coverages the hydrogen is itinerant because of quantum tunneling between sites and exhibits no observable vibrational modes. Between 0.4 ML and 0.6 ML, substrate mediated interactions produce an ordered superstructure with c(2x2) symmetry, and at higher coverages, hydrogen exists as a disordered lattice gas. This picture of how hydrogen interacts with NiAl(110) is developed from our data and compared to current theoretical predictions.Comment: 36 pages, including 12 figures, 2 tables and 58 reference

    Sculpting oscillators with light within a nonlinear quantum fluid

    Full text link
    Seeing macroscopic quantum states directly remains an elusive goal. Particles with boson symmetry can condense into such quantum fluids producing rich physical phenomena as well as proven potential for interferometric devices [1-10]. However direct imaging of such quantum states is only fleetingly possible in high-vacuum ultracold atomic condensates, and not in superconductors. Recent condensation of solid state polariton quasiparticles, built from mixing semiconductor excitons with microcavity photons, offers monolithic devices capable of supporting room temperature quantum states [11-14] that exhibit superfluid behaviour [15,16]. Here we use microcavities on a semiconductor chip supporting two-dimensional polariton condensates to directly visualise the formation of a spontaneously oscillating quantum fluid. This system is created on the fly by injecting polaritons at two or more spatially-separated pump spots. Although oscillating at tuneable THz-scale frequencies, a simple optical microscope can be used to directly image their stable archetypal quantum oscillator wavefunctions in real space. The self-repulsion of polaritons provides a solid state quasiparticle that is so nonlinear as to modify its own potential. Interference in time and space reveals the condensate wavepackets arise from non-equilibrium solitons. Control of such polariton condensate wavepackets demonstrates great potential for integrated semiconductor-based condensate devices.Comment: accepted in Nature Physic

    Observation of bright polariton solitons in a semiconductor microcavity

    Get PDF
    Microcavity polaritons are composite half-light half-matter quasi-particles, which have recently been demonstrated to exhibit rich physical properties, such as non-equilibrium Bose-Einstein condensation, parametric scattering and superfluidity. At the same time, polaritons have some important advantages over photons for information processing applications, since their excitonic component leads to weaker diffraction and stronger inter-particle interactions, implying, respectively, tighter localization and lower powers for nonlinear functionality. Here we present the first experimental observations of bright polariton solitons in a strongly coupled semiconductor microcavity. The polariton solitons are shown to be non-diffracting high density wavepackets, that are strongly localised in real space with a corresponding broad spectrum in momentum space. Unlike solitons known in other matter-wave systems such as Bose condensed ultracold atomic gases, they are non-equilibrium and rely on a balance between losses and external pumping. Microcavity polariton solitons are excited on picosecond timescales, and thus have significant benefits for ultrafast switching and transfer of information over their light only counterparts, semiconductor cavity lasers (VCSELs), which have only nanosecond response time

    Beam-Normal Single Spin Asymmetry in Elastic Electron Scattering off 28^{28}Si and 90^{90}Zr

    Full text link
    We report on a new measurement of the beam-normal single spin asymmetry AnA_{\mathrm{n}} in the elastic scattering of 570 MeV transversely polarized electrons off 28^{28}Si and 90^{90}Zr at Q2=0.04GeV2/c2Q^{2}=0.04\, \mathrm{GeV}^2/c^2. The studied kinematics allow for a comprehensive comparison with former results on 12^{12}C. No significant mass dependence of the beam-normal single spin asymmetry is observed in the mass regime from 12^{12}C to 90^{90}Zr.Comment: Submitted for publication to Physics Letters

    Former of Turn Trajectory of Sliding Valve Shaft of Gas Line

    Get PDF
    Former of turn trajectory of sliding valve shaft of gas line, that allows to provide desired motion trajectory of sliding valve and its full closing, is considered in that paper. Imitation model of that former, research results, which allow to detect influence of gain factor and time constant of position controller on value of speed error, that has impact on delay of output coordinate from setting, and that results to delay of sliding valve motion process to setting position point, are shown
    corecore