16 research outputs found

    Membrane asymmetry imposes directionality on lipid droplet emergence from the ER

    No full text
    During energy bursts, neutral lipids fabricated within the ER bilayer demix to form lipid droplets (LDs). LDs bud off mainly in the cytosol where they regulate metabolism and multiple biological processes. They indeed become accessible to most enzymes and can interact with other organelles. How such directional emergence is achieved remains elusive. Here, we found that this directionality is controlled by an asymmetry in monolayer surface coverage. Model LDs emerge on the membrane leaflet of higher coverage, which is improved by the insertion of proteins and phospholipids. In cells, continuous LD emergence on the cytosol would require a constant refill of phospholipids to the ER cytosolic leaflet. Consistent with this model, cells deficient in phospholipids present an increased number of LDs exposed to the ER lumen and compensate by remodeling ER shape. Our results reveal an active cooperation between phospholipids and proteins to extract LDs from ER

    Suivi citoyen des indicateurs des alĂ©as d’érosion cĂŽtiĂšre et de submersion marine : crĂ©ation de l’application smartphone et tablette CoastAppli et expĂ©rimentation Ă  GuissĂ©ny (FinistĂšre)

    No full text
    International audienceLes alĂ©as cĂŽtiers (Ă©rosion, submersion, migration dunaire) et les dynamiques cĂŽtiĂšres sont souvent mĂ©connus par le grand public. Or, dans un contexte de changement climatique et d’évolution de la lĂ©gislation (loi « Climat et rĂ©silience » en 2021) sur la gestion des alĂ©as et des risques cĂŽtiers (risque(s) combinant alĂ©a(s) et enjeu(x)), le suivi de l’évolution du littoral au travers d’indicateurs des alĂ©as cĂŽtiers (position du trait de cĂŽte, niveau de la plage, niveau d’eau sur un repĂšre lors d’une submersion, etc.) devrait ĂȘtre l’affaire de tous. Jusqu’à prĂ©sent, aucune application citoyenne pour smartphone ou tablette ne permettait de suivre conjointement les indicateurs des alĂ©as cĂŽtiers d’érosion et de submersion, alors que ces deux alĂ©as sont souvent liĂ©s. Pour y remĂ©dier, dans le cadre d’un projet de recherche et de formation (2019-2022) regroupant des Ă©tudiants en gĂ©ographie, en biologie et en informatique, nous avons crĂ©Ă© l’application Android CoastAppli. CoastAppli, qui vise un public large (habitants, touristes, scolaires, gestionnaires du littoral, etc.) et a Ă©tĂ© expĂ©rimentĂ©e Ă  GuissĂ©ny (FinistĂšre) entre janvier et octobre 2022 auprĂšs de 86 personnes, permet de rĂ©aliser un suivi citoyen des indicateurs d’alĂ©as cĂŽtiers. GrĂące Ă  l’implication des utilisateurs sur les quatre sites de cette commune, les rĂ©sultats soulignent la fiabilitĂ© des donnĂ©es quantitatives (jusqu’à une erreur globale de ± 4 cm) et/ou qualitatives, ainsi que la haute frĂ©quence d’acquisition (mensuelle). Par ailleurs, cela semble un bon moyen pour comprendre, discuter et rĂ©flĂ©chir entre acteurs du territoire aux dĂ©fis de gestion du littoral d’aujourd’hui et de demain

    Suivi citoyen des indicateurs des alĂ©as d’érosion cĂŽtiĂšre et de submersion marine : crĂ©ation de l’application smartphone et tablette CoastAppli et expĂ©rimentation Ă  GuissĂ©ny (FinistĂšre)

    No full text
    International audienceLes alĂ©as cĂŽtiers (Ă©rosion, submersion, migration dunaire) et les dynamiques cĂŽtiĂšres sont souvent mĂ©connus par le grand public. Or, dans un contexte de changement climatique et d’évolution de la lĂ©gislation (loi « Climat et rĂ©silience » en 2021) sur la gestion des alĂ©as et des risques cĂŽtiers (risque(s) combinant alĂ©a(s) et enjeu(x)), le suivi de l’évolution du littoral au travers d’indicateurs des alĂ©as cĂŽtiers (position du trait de cĂŽte, niveau de la plage, niveau d’eau sur un repĂšre lors d’une submersion, etc.) devrait ĂȘtre l’affaire de tous. Jusqu’à prĂ©sent, aucune application citoyenne pour smartphone ou tablette ne permettait de suivre conjointement les indicateurs des alĂ©as cĂŽtiers d’érosion et de submersion, alors que ces deux alĂ©as sont souvent liĂ©s. Pour y remĂ©dier, dans le cadre d’un projet de recherche et de formation (2019-2022) regroupant des Ă©tudiants en gĂ©ographie, en biologie et en informatique, nous avons crĂ©Ă© l’application Android CoastAppli. CoastAppli, qui vise un public large (habitants, touristes, scolaires, gestionnaires du littoral, etc.) et a Ă©tĂ© expĂ©rimentĂ©e Ă  GuissĂ©ny (FinistĂšre) entre janvier et octobre 2022 auprĂšs de 86 personnes, permet de rĂ©aliser un suivi citoyen des indicateurs d’alĂ©as cĂŽtiers. GrĂące Ă  l’implication des utilisateurs sur les quatre sites de cette commune, les rĂ©sultats soulignent la fiabilitĂ© des donnĂ©es quantitatives (jusqu’à une erreur globale de ± 4 cm) et/ou qualitatives, ainsi que la haute frĂ©quence d’acquisition (mensuelle). Par ailleurs, cela semble un bon moyen pour comprendre, discuter et rĂ©flĂ©chir entre acteurs du territoire aux dĂ©fis de gestion du littoral d’aujourd’hui et de demain

    Lecithin:Retinol Acyl Transferase (LRAT) induces the formation of lipid droplets

    No full text
    Lipid droplets are unique and nearly ubiquitous organelles that store neutral lipids in a hydrophobic core, surrounded by a monolayer of phospholipids. The primary neutral lipids are triacylglycerols and steryl esters. It is not known whether other classes of neutral lipids can form lipid droplets by themselves. Here we show that production of retinyl esters by lecithin:retinol acyl transferase (LRAT) in yeast cells, incapable of producing triacylglycerols and steryl esters, causes the formation of lipid droplets. By electron microscopy, these lipid droplets are morphologically indistinguishable from those in wild-type cells. In silico and in vitro experiments confirmed the propensity of retinyl esters to segregate from membranes and to form lipid droplets. The hydrophobic N-terminus of LRAT displays preferential interactions with retinyl esters in membranes and promotes the formation of large retinyl ester-containing lipid droplets in mammalian cells. Our combined data indicate that the molecular design of LRAT is optimally suited to allow the formation of characteristic large lipid droplets in retinyl ester-storing cells

    Retinyl esters form lipid droplets independently of triacylglycerol and seipin

    Get PDF
    Lipid droplets store neutral lipids, primarily triacylglycerol and steryl esters. Seipin plays a role in lipid droplet biogenesis and is thought to determine the site of lipid droplet biogenesis and the size of newly formed lipid droplets. Here we show a seipin-independent pathway of lipid droplet biogenesis. In silico and in vitro experiments reveal that retinyl esters have the intrinsic propensity to sequester and nucleate in lipid bilayers. Production of retinyl esters in mammalian and yeast cells that do not normally produce retinyl esters causes the formation of lipid droplets, even in a yeast strain that produces only retinyl esters and no other neutral lipids. Seipin does not determine the size or biogenesis site of lipid droplets composed of only retinyl esters or steryl esters. These findings indicate that the role of seipin in lipid droplet biogenesis depends on the type of neutral lipid stored in forming droplets

    Seipin and Nem1 establish discrete ER subdomains to initiate yeast lipid droplet biogenesis

    No full text
    Lipid droplets (LDs) are fat storage organelles that originate from the endoplasmic reticulum (ER). Relatively little is known about how sites of LD formation are selected and which proteins/lipids are necessary for the process. Here, we show that LDs induced by the yeast triacylglycerol (TAG)-synthases Lro1 and Dga1 are formed at discrete ER subdomains defined by seipin (Fld1), and a regulator of diacylglycerol (DAG) production, Nem1. Fld1 and Nem1 colocalize to ER–LD contact sites. We find that Fld1 and Nem1 localize to ER subdomains independently of each other and of LDs, but both are required for the subdomains to recruit the TAG-synthases and additional LD biogenesis factors: Yft2, Pex30, Pet10, and Erg6. These subdomains become enriched in DAG. We conclude that Fld1 and Nem1 are both necessary to recruit proteins to ER subdomains where LD biogenesis occurs

    Retinyl esters form lipid droplets independently of triacylglycerol and seipin

    No full text
    Lipid droplets store neutral lipids, primarily triacylglycerol and steryl esters. Seipin plays a role in lipid droplet biogenesis and is thought to determine the site of lipid droplet biogenesis and the size of newly formed lipid droplets. Here we show a seipin-independent pathway of lipid droplet biogenesis. In silico and in vitro experiments reveal that retinyl esters have the intrinsic propensity to sequester and nucleate in lipid bilayers. Production of retinyl esters in mammalian and yeast cells that do not normally produce retinyl esters causes the formation of lipid droplets, even in a yeast strain that produces only retinyl esters and no other neutral lipids. Seipin does not determine the size or biogenesis site of lipid droplets composed of only retinyl esters or steryl esters. These findings indicate that the role of seipin in lipid droplet biogenesis depends on the type of neutral lipid stored in forming droplets
    corecore