434 research outputs found
The Inflection Point of the Speed-Density Relation and the Social Force Model
It has been argued that the speed-density digram of pedestrian movement has
an inflection point. This inflection point was found empirically in
investigations of closed-loop single-file pedestrian movement. The reduced
complexity of single-file movement does not only allow a higher precision for
the evaluation of empirical data, but it occasionally also allows analytical
considerations for micosimulation models. In this way it will be shown that
certain (common) variants of the Social Force Model (SFM) do not produce an
inflection point in the speed-density diagram if infinitely many pedestrians
contribute to the force computed for one pedestrian. We propose a modified
Social Force Model that produces the inflection point.Comment: accepted for presentation at conference Traffic and Granular Flow
201
Effects of Boundary Conditions on Single-File Pedestrian Flow
In this paper we investigate effects of boundary conditions on one
dimensional pedestrian flow which involves purely longitudinal interactions.
Qualitatively, stop-and-go waves are observed under closed boundary condition
and dissolve when the boundary is open. To get more detailed information the
fundamental diagrams of the open and closed systems are compared using
Voronoi-based measurement method. Higher maximal specific flow is observed from
the pedestrian movement at open boundary condition
Bonding, aromaticity and reactivity patterns in some all-metal and non-metal clusters
Several sandwich-like metal clusters have been studied at the B3LYP/6-311 + G* level of theory. Bonding and reactivity have been analysed through various geometrical parameters and conceptual density functional theory based global reactivity descriptors. Aromaticity patterns have been understood in terms of the associated nucleus independent chemical shift values. Possibility of bond-stretch isomerism in some doped clusters is explored. Preferable sites for electrophilic and nucleophilic attacks have been identified using different local reactivity descriptors
Recombinant Protein Micelles to Block Transduction by SARS-CoV-2 Pseudovirus
The continuing emergence of variants of the SARS-CoV-2 virus requires the development of modular molecular therapies. Here, we engineered a recombinant amphiphilic protein, oleosin, to spontaneously self-assemble into multivalent micellar nanostructures which can block the Spike S1 protein of SARS-CoV-2 pseudoviruses (PVs). Short recombinant proteins like oleosin can be formulated more easily than antibodies and can be functionalized with precision through genetic engineering. We cloned S1-binding mini-protein genes called LC
Relationship between electrophilicity index, Hammett constant and nucleus-independent chemical shift
Inter-relationships between the electrophilicity index (Ω), Hammett constant (óp @#@) and nucleusindependent chemical shift (NICS (1) - NICS value one ångstrom above the ring centre) have been investigated for a series of meta- and para-substituted benzoic acids. Good linear relationships between Hammett constant vs electrophilicity and Hammett constant vs NICS (1) values have been observed. However, the variation of NICS (1) against CO shows only a low correlation coefficient
Mining, compressing and classifying with extensible motifs
BACKGROUND: Motif patterns of maximal saturation emerged originally in contexts of pattern discovery in biomolecular sequences and have recently proven a valuable notion also in the design of data compression schemes. Informally, a motif is a string of intermittently solid and wild characters that recurs more or less frequently in an input sequence or family of sequences. Motif discovery techniques and tools tend to be computationally imposing, however, special classes of "rigid" motifs have been identified of which the discovery is affordable in low polynomial time. RESULTS: In the present work, "extensible" motifs are considered such that each sequence of gaps comes endowed with some elasticity, whereby the same pattern may be stretched to fit segments of the source that match all the solid characters but are otherwise of different lengths. A few applications of this notion are then described. In applications of data compression by textual substitution, extensible motifs are seen to bring savings on the size of the codebook, and hence to improve compression. In germane contexts, in which compressibility is used in its dual role as a basis for structural inference and classification, extensible motifs are seen to support unsupervised classification and phylogeny reconstruction. CONCLUSION: Off-line compression based on extensible motifs can be used advantageously to compress and classify biological sequences
Automatic extraction of candidate nomenclature terms using the doublet method
BACKGROUND: New terminology continuously enters the biomedical literature. How can curators identify new terms that can be added to existing nomenclatures? The most direct method, and one that has served well, involves reading the current literature. The scholarly curator adds new terms as they are encountered. Present-day scholars are severely challenged by the enormous volume of biomedical literature. Curators of medical nomenclatures need computational assistance if they hope to keep their terminologies current. The purpose of this paper is to describe a method of rapidly extracting new, candidate terms from huge volumes of biomedical text. The resulting lists of terms can be quickly reviewed by curators and added to nomenclatures, if appropriate. The candidate term extractor uses a variation of the previously described doublet coding method. The algorithm, which operates on virtually any nomenclature, derives from the observation that most terms within a knowledge domain are composed entirely of word combinations found in other terms from the same knowledge domain. Terms can be expressed as sequences of overlapping word doublets that have more specific meaning than the individual words that compose the term. The algorithm parses through text, finding contiguous sequences of word doublets that are known to occur somewhere in the reference nomenclature. When a sequence of matching word doublets is encountered, it is compared with whole terms already included in the nomenclature. If the doublet sequence is not already in the nomenclature, it is extracted as a candidate new term. Candidate new terms can be reviewed by a curator to determine if they should be added to the nomenclature. An implementation of the algorithm is demonstrated, using a corpus of published abstracts obtained through the National Library of Medicine's PubMed query service and using "The developmental lineage classification and taxonomy of neoplasms" as a reference nomenclature. RESULTS: A 31+ Megabyte corpus of pathology journal abstracts was parsed using the doublet extraction method. This corpus consisted of 4,289 records, each containing an abstract title. The total number of words included in the abstract titles was 50,547. New candidate terms for the nomenclature were automatically extracted from the titles of abstracts in the corpus. Total execution time on a desktop computer with CPU speed of 2.79 GHz was 2 seconds. The resulting output consisted of 313 new candidate terms, each consisting of concatenated doublets found in the reference nomenclature. Human review of the 313 candidate terms yielded a list of 285 terms approved by a curator. A final automatic extraction of duplicate terms yielded a final list of 222 new terms (71% of the original 313 extracted candidate terms) that could be added to the reference nomenclature. CONCLUSION: The doublet method for automatically extracting candidate nomenclature terms can be used to quickly find new terms from vast amounts of text. The method can be immediately adapted for virtually any text and any nomenclature. An implementation of the algorithm, in the Perl programming language, is provided with this article
Automated Quality Assessment of Space-Continuous Models for Pedestrian Dynamics
In this work we propose a methodology for assessment of pedestrian models
continuous in space. With respect to the Kolmogorov-Smirnov distance between
two data clouds, representing for instance simulated and the corresponding
empirical data, we calculate an evaluation factor between zero and one. Based
on the value of the herein developed factor, we make a statement about the
goodness of the model under evaluation. Moreover this process can be repeated
in an automatic way in order to maximize the above mentioned factor and hence
determine the optimal set of model parameters.Comment: 8 pages, 3 figures, accepted at the Proceedings of Traffic and
Granular Flow '1
The use of the SeDeM diagram expert system for the formulation of Captopril SR matrix tablets by direct compression
The SeDeM Diagram Expert System has been used to study excipients, Captopril and designed formulations for their galenic characterization and to ascertain the critical points of the formula affecting product quality to obtain suitable formulations of Captopril Direct Compression SR Matrix Tablets. The application of the Sedem Diagram Expert System enables selecting excipients with in order to optimize the formula in the preformulation and formulation studies. The methodology is based on the implementation of ICH Q8, establishing the design space of the formula with the use of experiment design, using the parameters of the SeDeM Diagram Expert System as system responses
- …