92 research outputs found

    Low particulate carbon to nitrogen ratios in marine surface waters of the Arctic

    Get PDF
    During the Canada Three Oceans and Joint Ocean Ice Study projects in the summers of 2007 and 2008, we measured particulate organic carbon to nitrogen ratios (POC:PON) throughout the euphotic zone in subarctic and arctic waters. Depth-integrated values averaged 2.65 (±0.19) in the Beaufort Sea and Canada Basin (BS-CB domain), and were much lower than both the Redfield ratio (6.6) and the average ratios (3.9 to 5.6) measured across other arctic-subarctic domains. Average uptake ratios of C and N (ρC:ρN) were also lower (0.87±0.14) in BS-CB than in the other four domains (2.10 to 3.51). Decreasing POC:PON ratios were associated with low concentrations of phytoplankton C, reduced abundance of biogenic silica (bSiO2), a smaller relative contribution of the >5 µm fraction to total chlorophyll a and a larger relative contribution of small flagellates (<8 µm) to phytoplankton C. In the subsurface chlorophyll a maximum (SCM) within the BS-CB domain, phytoplankton C represented only ~13% of POC, and therefore low POC:PON may be influenced by the presence of heterotrophic microbes. These ratios are supported by data obtained during other arctic programs in 2006, 2008 and 2009. Previous work has suggested a link between freshening of surface waters and increasing dominance of picophytoplankton and bacterioplankton in the Canada Basin, and the low POC:PON ratios measured during this study may be a consequence of this shift. Our results have ramifications for the conversion between C- and N-based estimates of primary productivity, and for biogeochemical modeling of marine arctic waters.Facultad de Ciencias Naturales y Muse

    Islands of ice: Influence of free-drifting Antarctic icebergs on pelagic marine ecosystems

    Get PDF
    Regional warming around West Antarctica, including the Antarctic Peninsula, is related to the retreat of glaciers that has resulted in significant ice mass loss in recent decades. We examined freedrifting icebergs in the Atlantic sector of the Southern Ocean in December 2005, aboard ARSV Laurence M. Gould, and in June 2008 and March/April 2009, aboard RVIB Nathaniel B. Palmer. Prior to these studies, little information was available about the effects of icebergs on the pelagic realm.Facultad de Ciencias Naturales y Muse

    Islands of ice: Influence of free-drifting Antarctic icebergs on pelagic marine ecosystems

    Get PDF
    Regional warming around West Antarctica, including the Antarctic Peninsula, is related to the retreat of glaciers that has resulted in significant ice mass loss in recent decades. We examined freedrifting icebergs in the Atlantic sector of the Southern Ocean in December 2005, aboard ARSV Laurence M. Gould, and in June 2008 and March/April 2009, aboard RVIB Nathaniel B. Palmer. Prior to these studies, little information was available about the effects of icebergs on the pelagic realm.Facultad de Ciencias Naturales y Muse

    Ice sheets as a missing source of silica to the polar oceans

    Get PDF
    Ice sheets play a more important role in the global silicon cycle than previously appreciated. Input of dissolved and amorphous particulate silica into natural waters stimulates the growth of diatoms. Here we measure dissolved and amorphous silica in Greenland Ice Sheet meltwaters and icebergs, demonstrating the potential for high ice sheet export. Our dissolved and amorphous silica flux is 0.20 (0.06-0.79) Tmol year(-1), ∼50% of the input from Arctic rivers. Amorphous silica comprises >95% of this flux and is highly soluble in sea water, as indicated by a significant increase in dissolved silica across a fjord salinity gradient. Retreating palaeo ice sheets were therefore likely responsible for high dissolved and amorphous silica fluxes into the ocean during the last deglaciation, reaching values of ∼5.5 Tmol year(-1), similar to the estimated export from palaeo rivers. These elevated silica fluxes may explain high diatom productivity observed during the last glacial-interglacial period
    corecore