12 research outputs found

    Exercise with TENS does not augment gains in balance and strength for dancers

    No full text
    Electrical stimulation modulates sensory feedback and improves motor performance, at least for individuals with compromised sensorimotor function. The purpose of this study was to determine the effectiveness of a 4-wk intervention with transcutaneous electrical nerve stimulation (TENS) at improving strength and balance in dancers. Nineteen dancers completed a timed, single-leg balance test, the Y-balance test, and contractions with the hip flexor and knee extensor muscles to assess maximal strength and force steadiness. They completed 4-wks of moderate-intensity bodyweight exercises (3x/wk) and were pseudo-randomized to either a Treatment or Sham group in a single-blind design. The Treatment group received constant TENS over the hamstring muscles during the exercises, whereas the Sham group was exposed to a brief TENS current. The data were pooled due to few significant between-group differences from before to after the intervention. Most outcome measures significantly improved: hip extensor muscles were stronger (P ≀ 0.01), time stood on a single-leg with eyes closed increased (P = 0.02), and the distance reached during the Y-balance test increased (P ≀ 0.001). The improvement in scores on the Y-balance test exceeded the minimal clinically significant change. Twelve sessions of moderate-intensity bodyweight exercises improved muscle strength and balance in experienced dancers. The addition of TENS, however, did not augment the gains in function

    RPE vs Percentage 1RM Loading in Periodized Programs Matched for Sets and Repetitions

    No full text
    Purpose: To investigate differences between rating of perceived exertion (RPE) and percentage one-repetition maximum (1RM) load assignment in resistance-trained males (19–35 years) performing protocols with matched sets and repetitions differentiated by load-assignment. Methods: Participants performed squats then bench press 3x/weeks in a daily undulating format over 8-weeks. Participants were counterbalanced by pre-test 1RM then assigned to percentage 1RM (1RMG, n = 11); load-assignment via percentage 1RMs, or RPE groups (RPEG, n = 10); participant-selected loads to reach target RPE ranges. Ultrasonography determined pre and post-test pectoralis (PMT), and vastus lateralis muscle thickness at 50 (VLMT50) and 70% (VLMT70) femur-length. Results: Bench press (1RMG +9.64 ± 5.36; RPEG + 10.70 ± 3.30 kg), squat (1RMG + 13.91 ± 5.89; RPEG + 17.05 ± 5.44 kg) and their combined-total 1RMs (1RMG + 23.55 ± 10.38; RPEG + 27.75 ± 7.94 kg) increased (p 0.05). Magnitude-based inferences revealed 79, 57, and 72% chances of mean small effect size (ES) advantages for squat; ES 90% confidence limits (CL) = 0.50 ± 0.63, bench press; ES 90% CL = 0.28 ± 0.73, and combined-total; ES 90% CL = 0.48 ± 0.68 respectively, in RPEG. There were 4, 14, and 6% chances 1RMG had a strength advantage of the same magnitude, and 18, 29, and 22% chances, respectively of trivial differences between groups. Conclusions: Both loading-types are effective. However, RPE-based loading may provide a small 1RM strength advantage in a majority of individuals

    Low-volume acute multi-joint resistance exercise elicits a circulating brain-derived neurotrophic factor response but not a cathepsin B response in well-trained men

    No full text
    This study examined if acute multi-joint resistance exercises (RE; back squat, bench press, and deadlift) to volitional failure elicited a postexercise increase in the circulating response of biomarkers associated with neuroprotection. Thirteen males (age: 24.5 ± 3.8 years, body mass: 84.01 ± 15.44 kg, height: 173.43 ± 8.57 cm, training age: 7.1 ± 4.2 years) performed 4 sets to failure at 80% of a 1-repetition maximum on the squat, bench press, and deadlift in successive weeks. The measured biomarkers were brain-derived neurotrophic factor (BDNF), insulin-like growth factor 1 (IGF-1), cathepsin B (CatB), and interleukin 6 (IL-6). Biomarkers were assessed immediately before and 10-min after exercise. There was a main time effect (pre-exercise: 24.00 ± 0.61 to postexercise: 27.38 ± 0.48 ng/mL; p < 0.01) for BDNF with increases in the deadlift (p = 0.01) and bench press (p = 0.01) conditions, but not in the squat condition (p = 0.21). There was a main time effect (pre-exercise: 0.87 ± 0.16 to postexercise: 2.03 ± 0.32 pg/mL; p < 0.01) for IL-6 with a significant increase in the squat (p < 0.01), but not the bench press (p = 0.88) and deadlift conditions (p = 0.24). No main time effect was observed for either CatB (p = 0.62) or IGF-1 (p = 0.56). In summary, acute multi-joint RE increases circulating BDNF. Further, this investigation is the first to report the lack of a transient change of CatB to an acute RE protocol. Novelty ‱ Low-volume RE to failure can increase BDNF. ‱ Resistance training does not confer an acute Cat B response.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Novel and emerging biotechnological crop protection approaches

    No full text
    Traditional breeding or genetically modified organisms (GMOs) have for a long time been the sole approaches to effectively cope with biotic and abiotic stresses and implement the quality traits of crops. However, emerging diseases as well as unpredictable climate changes affecting agriculture over the entire globe force scientists to find alternative solutions required to quickly overcome seasonal crises. In this review, we first focus on cisgenesis and genome editing as challenging biotechnological approaches for breeding crops more tolerant to biotic and abiotic stresses. In addition, we take into consideration a toolbox of new techniques based on applications of RNA interference and epigenome modifications, which can be adopted for improving plant resilience. Recent advances in these biotechnological applications are mainly reported for non‐model plants and woody crops in particular. Indeed, the characterization of RNAi machinery in plants is fundamental to transform available information into biologically or biotechnologically applicable knowledge. Finally, here we discuss how these innovative and environmentally friendly techniques combined with traditional breeding can sustain a modern agriculture and be of potential contribution to climate change mitigation

    Ocular Involvement in Primary Immunodeficiency Diseases

    No full text
    corecore