1,086 research outputs found
Modelling tracer dispersion from landfills
Several wind tunnel experiments of tracer dispersion from reduced-scale landfill models are presented in this paper. Different experimental set-ups, hot-wire anemometry, particle image velocimetry and tracer concentration measurements were used for the characterisation of flow and dispersion phenomena nearby the models. The main aim of these experiments is to build an extensive experimental data set useful for model validation purposes. To demonstrate the potentiality of the experimental data set, a validation exercise on several mathematical models was performed by means of a statistical technique. The experiments highlighted an increase in pollutant ground level concentrations immediately downwind from the landfill because of induced turbulence and mean flow deflection. This phenomenon turns out to be predominant for the dispersion process. Tests with a different set-up showed an important dependence of the dispersion phenomena from the landfill height and highlighted how complex orographic conditions downwind of the landfill do not affect significantly the dispersion behaviour. Validation exercises were useful for model calibration, improving code reliability, as well as evaluating performances. The Van Ulden model proved to give the most encouraging results
Life cycle assessment (LCA) of an integrated biomass gasification combined cycle IBGCC with CO2 removal
Based on the results of previous studies, the efficiency of a Brayton/Hirn combined cycle fuelled with a clean syngas produced by means of biomass gasification and equipped with CO2 removal by chemical absorption reached 33.94%, considering also the separate CO2 compression process. The specific CO2 emission of the power plant was 178 kg/MW h. In comparison with values previously found for an integrated coal gasification combined cycle (ICGCC) with upstream CO2 chemical absorption (38–39% efficiency, 130 kg/MW h specific CO2 emissions), this configuration seems to be attractive because of the possibility of operating with a simplified scheme and because of the possibility of using biomass in a more efficient way with respect to conventional systems. In this paper, a life cycle assessment (LCA) was conducted with presenting the results on the basis of the Eco-Indicator 95 impact assessment methodology. Further, a comparison with the results previously obtained for the LCA of the ICGCC was performed in order to highlight the environmental impact of biomass production with fossil fuels utilisation. The LCA shows the important environmental advantages of biomass utilisation in terms of reduction of both greenhouse gas emissions and natural resource depletion, although an improved impact assessment methodology may better highlight the advantages due to the biomass utilisation
Radon concentration in self-bottled mineral spring waters as a possible public health issue
Since 2013, the Council Directive 2013/51/Euratom has been regulating the content of radioactive substances in water intended for human consumption. However, mineral waters are exempted from this regulation, including self-bottled springs waters, where higher radon concentration are expected. Therefore, a systematic survey has been conducted on all the 33 mineral spring waters of Lazio (a region of Central Italy) in order to assess if such waters, when self-bottled, may be of concern for public health. Waters have been sampled in two different ways to evaluate the impact of bottling on radon concentration. Water sampling was possible for 20 different spring waters, with 6 samples for each one. The results show that 2 (10%) of measured mineral spring waters returned radon concentrations higher than 100 Bq L−1, i.e., the parametric value established by the Council Directive. These results, if confirmed by other surveys involving a higher number of mineral spring waters, would suggest regulating also these waters, especially in countries like Italy for which: (i) mineral water consumption is significant; (ii) mineral concession owners generally allow the consumers to fill bottles and containers, intended for transport and subsequent consumption, directly from public fountains or from fountains within the plant; (iii) the consumers’ habit of drinking self-bottled mineral water is widespread
The peculiar structural features of kiwi fruit pectin methylesterase: amino acid sequence, oligosaccharides structure, and modeling of the interaction with its natural proteinaceous inhibitor
Pectin methylesterase (PME) from kiwi fruit (Actinidia deliciosa) is a glycoprotein, showing an apparent molecular mass of 50 kDa upon size exclusion chromatography and SDS-PAGE. The primary structure, elucidated by direct sequencing of the protein, comprises 321 amino acid residues providing a molecular mass of 35 kDa. The protein has an acetylated Thr residue at the amino terminus and five N-glycosylation consensus sequences, four of which are actually glycosylated. A careful investigation of the oligosaccharide structures demonstrated that PME glycans belong to complex type oligosaccharides essentially consisting of xylosylated polyfucosylated biantennary structures. Alignment with known mature plant PME sequences indicates that the postulated active site residues are conserved. Kiwi PME activity is inhibited following the interaction with the proteinaceous inhibitor PMEI, isolated from the same source. Gel-filtration experiments show that kiwi PME/PMEI complex is stable in a large pH range and dissociates only at pH 10.0. Modeling of the interaction with the inhibitor was performed by using the crystal structure of the complex between kiwi PMEI and tomato PME as a template. The model shows that the binding site is the same reported for tomato PME. However, additional salt link interactions are found to connect the external loops of kiwi PME to PMEI. This finding may explain the higher pH stability of the complex formed by the two kiwi proteins respect to that formed by PMEI and tomato PME
High annual radon concentration in dwellings and natural radioactivity content in nearby soil in some rural areas of Kosovo and Metohija
Some previous studies on radon concentration in dwellings of some areas of Kosovo and Metohija have revealed a high average radon concentration, even though the detectors were exposed for three months only. In order to better design a larger study in this region, the annual measurements in 25 houses were carried out as a pilot study. For each house, CR-39-based passive devices were exposed in two rooms for the two consecutive six-month periods to account for seasonal variations of radon concentration. Furthermore, in order to correlate the indoor radon with radium in nearby soil and to improve the knowledge of the natural radioactivity in the region, soil samples near each house were collected and 226Ra, 232Th, 40K activity concentration were measured. The indoor radon concentration resulted quite high from the average (163 Bq/m3) and generally it did not differ considerably between the two rooms and the two six-month periods. The natural radionuclides in soil resulted to be distributed quite uniformly. Moreover, the correlation between the226Ra content in soil and radon concentration in dwellings resulted to be low (R2=0.26). The annual effective dose from radon and its short-lived progeny (5.5 mSv, in average) was calculated by using the last ICRP dose conversion factors. In comparison, the contribution to the annual effective dose of outdoor gamma exposure from natural radionuclides in soil is nearly negligible (66 mSv). In conclusion, the observed high radon levels are only partially correlated with radium in soil; moreover, a good estimate of the annual average of radon concentration can be obtained from a six-month measurement with a proper choice of exposure period, which could be useful when designing large surveys
Protease treatment affects both invasion ability and biofilm formation in Listeria monocytogenes
Listeria monocytogenes is a notably invasive bacterium associated with life-threatening food-borne disease in humans. Several surface proteins have been shown to be essential in the adhesion of L. monocytogenes, and in the subsequent invasion of phagocytes. Because the control of the invasion of host cells by Listeria could potentially hinder its spread in the infected host, we have examined the effects of a protease treatment on the ability of L. monocytogenes to form biofilms and to invade tissues. We have chosen serratiopeptidase (SPEP), an extracellular metalloprotease produced by Serratia marcescens that is already widely used as an anti-inflammatory agent, and has been shown to modulate adhesin expression and to induce antibiotic sensitivity in other bacteria. Treatment of L. monocytogenes with sublethal concentrations of SPEP reduced their ability to form biofilms and to invade host cells. Zymograms of the treated cells revealed that Ami4b autolysin, internalinB, and ActA were sharply reduced. These cell-surface proteins are known to function as ligands in the interaction between these bacteria and their host cells, and our data suggest that treatment with this natural enzyme may provide a useful tool in the prevention of the initial adhesion of L. monocytogenes to the human gu
Recommended from our members
In-street wind direction variability in the vicinity of a busy intersection in central London
We present results from fast-response wind measurements within and above a busy intersection between two street canyons (Marylebone Road and Gloucester Place) in Westminster, London taken as part of the DAPPLE (Dispersion of Air Pollution and Penetration into the Local Environment; www.dapple.org.uk) 2007 field campaign. The data reported here were collected using ultrasonic anemometers on the roof-top of a building adjacent to the intersection and at two heights on a pair of lamp-posts on opposite sides of the intersection. Site characteristics, data analysis and the variation of intersection flow with the above-roof wind direction (θref) are discussed. Evidence of both flow channelling and recirculation was identified within the canyon, only a few metres from the intersection for along-street and across-street roof-top winds respectively. Results also indicate that for oblique rooftop flows, the intersection flow is a complex combination of bifurcated channelled flows, recirculation and corner vortices. Asymmetries in local building geometry around the intersection and small changes in the background wind direction (changes in 15-min mean θref of 5–10 degrees) were also observed to have profound influences on the behaviour of intersection flow patterns. Consequently, short time-scale variability in the background flow direction can lead to highly scattered in-street mean flow angles masking the true multi-modal features of the flow and thus further complicating modelling challenges
Caracterização fenotípica de bactérias endofíticas isoladas de cultivares de soja transgênica e convencional.
Recommended from our members
Evaluation of fast atmospheric dispersion models in a regular street network
The need to balance computational speed and simulation accuracy is a key challenge in designing atmospheric dispersion models that can be used in scenarios where near real-time hazard predictions are needed. This challenge is aggravated in cities, where models need to have some degree of building-awareness, alongside the ability to capture effects of dominant urban flow processes. We use a combination of high-resolution large-eddy simulation (LES) and wind-tunnel data of flow and dispersion in an idealised, equal-height urban canopy to highlight important dispersion processes and evaluate how these are reproduced by representatives of the most prevalent modelling approaches: (i) a Gaussian plume model, (ii) a Lagrangian stochastic model and (iii) street-network dispersion models. Concentration data from the LES, validated against the wind-tunnel data, were averaged over the volumes of streets in order to provide a high-fidelity reference suitable for evaluating the different models on the same footing. For the particular combination of forcing wind direction and source location studied here, the strongest deviations from the LES reference were associated with mean over-predictions of concentrations by approximately a factor of 2 and with a relative scatter larger than a factor of 4 of the mean, corresponding to cases where the mean plume centreline also deviated significantly from the LES. This was linked to low accuracy of the underlying flow models/parameters that resulted in a misrepresentation of pollutant channelling along streets and of the uneven plume branching observed in intersections. The agreement of model predictions with the LES (which explicitly resolves the turbulent flow and dispersion processes) greatly improved by increasing the accuracy of building-induced modifications of the driving flow field. When provided with a limited set of representative velocity parameters, the comparatively simple street-network models performed equally well or better compared to the Lagrangian model run on full 3D wind fields. The study showed that street-network models capture the dominant building-induced dispersion processes in the canopy layer through parametrisations of horizontal advection and vertical exchange processes at scales of practical interest. At the same time, computational costs and computing times associated with the network approach are ideally suited for emergency-response applications
- …
