160 research outputs found

    Is telephone follow-up useful in preventing post-extraction bleeding in patients on antithrombotic treatment?

    Get PDF
    Background: The aim of the study was to investigate the usefulness of telephone follow-up in preventing post-extraction bleeding and improving wound healing in patients on chronic antithrombotic treatment. Material and Methods: A prospective randomized clinical trial was carried out on 256 patients (test group = 128; control group = 128). The exact two-tailed Fisher test and the two-tailed non-parametric Mann-Whitney test were used for statistical analysis. Results: The incidence of post-extraction bleeding was 15.6% and there was no difference between test and control groups. However, the study group was significantly, though weakly, associated with the severity of bleeding. Patient satisfaction with post-operative follow-up differed significantly between patients who had and those who did not have post-extraction bleeding. Conclusions: Telephone follow-up after tooth extraction may play a role in the prevention of severe post-operative bleeding as well as in monitoring and managing the surgical wound

    Understanding and optimising the packing density of perylene bisimide layers on CVD-grown graphene

    Full text link
    The non-covalent functionalisation of graphene is an attractive strategy to alter the surface chemistry of graphene without damaging its superior electrical and mechanical properties. Using the facile method of aqueous-phase functionalisation on large-scale CVD-grown graphene, we investigated the formation of different packing densities in self-assembled monolayers (SAMs) of perylene bisimide derivatives and related this to the amount of substrate contamination. We were able to directly observe wet-chemically deposited SAMs in scanning tunnelling microscopy (STM) on transferred CVD graphene and revealed that the densely packed perylene ad-layers adsorb with the conjugated {\pi}-system of the core perpendicular to the graphene substrate. This elucidation of the non-covalent functionalisation of graphene has major implications on controlling its surface chemistry and opens new pathways for adaptable functionalisation in ambient conditions and on the large scale.Comment: 27 pages (including SI), 10 figure

    Optimisation and characterisation of biosensors based on polyaniline

    Get PDF
    With lower limits of detection and increased stability constantly being demanded of biosensor devices, characterisation of the constituent layers that make up the sensor has become unavoidable, since this is inextricably linked with its performance. This work describe the optimisation and characterisation of two aspects of sensor performance: a conductive polymer layer (polyaniline) and the immobilised protein layer. The influence of the thickness of polyaniline films deposited electrochemically onto screen-printed electrode surfaces is described in this work in terms of its influence on a variety of amperometric sensor performance characteristics: time to reach steady state, charging current, catalytic current, background current and signal/background ratios. The influence of polymer film thickness on the conductivity and morphology of finished films is also presented. An electrostatic method of protein immobilisation is used in this work and scanning electron microscopy in conjunction with gold-labelled antibodies and back-scattered electron detection has enabled the direct visualisation of individual groups of proteins on the sensor surface. Such information can provide an insight into the performance of sensors under influence of increasing protein concentrations

    A non-destructive method to calibrate the torsional spring constant of atomic force microscope cantilevers in viscous environments.

    Get PDF
    Calibration of the torsional spring constant of atomic force microscopy cantilevers is fundamental to a range of applications, from nanoscale friction and lubrication measurements to the characterization of micro-electromechanical systems and the response of biomolecules to external stimuli. Existing calibration methods are either time consuming and destructive (ex situ static approaches), or rely on models using the frequency and quality factor (Q-factor) of the cantilever torsional resonance as input parameters (in situ dynamical approaches). While in situ approaches are usually preferred for their easy implementation and preservation of the cantilever, their dependence on the torsional resonance Q-factor renders calibration in highly viscous environments challenging. This is problematic, for example, in many nanoscale tribological applications. Here, we propose a calibration method that does not depend on the cantilever torsional Q-factor and show how the cantilever deflection can be converted into a lateral force. The method is tested with six cantilevers of different shapes and material composition and in six fluid media. The derived spring constants are compared with predictions from existing methods, demonstrating a higher precision, in particular, for highly viscous liquids

    Synthesis and Characterization of Temperature-Sensitive and Chemically Cross-Linked Poly(N-isopropylacrylamide)/Photosensitizer Hydrogels for Applications in Photodynamic Therapy

    Get PDF
    Copyright © 2018 American Chemical Society. A novel poly(N-isopropylacrylamide) (PNIPAM) hydrogel containing different photosensitizers (protoporphyrin IX (PpIX), pheophorbide a (Pba), and protoporphyrin IX dimethyl ester (PpIX-DME)) has been synthesized with a significant improvement in water solubility and potential for PDT applications compared to the individual photosensitizers (PSs). Conjugation of PpIX, Pba, and PpIX-DME to the poly(N-isopropylacrylamide) chain was achieved using the dispersion polymerization method. This study describes how the use of nanohydrogel structures to deliver a photosensitizer with low water solubility and high aggregation tendencies in polar solvents overcomes these limitations. FT-IR spectroscopy, UV-vis spectroscopy, 1 H NMR, fluorescence spectroscopy, SEM, and DLS analysis were used to characterize the PNIPAM-photosensitizer nanohydrogels. Spectroscopic studies indicate that the PpIX, Pba, and PpIX-DME photosensitizers are covalently conjugated to the polymer chains, which prevents aggregation and thus allows significant singlet oxygen production upon illumination. Likewise, the lower critical solution temperature was raised to ∼44 °C in the new PNIPAM-PS hydrogels. The PNIPAM hydrogels are biocompatible with > 90% cell viability even at high concentrations of the photosensitizer in vitro. Furthermore, a very sharp onset of light-dependent toxicity for the PpIX-based nanohydrogel in the nanomolar range and a more modest, but significant, photocytotoxic response for Pba-PNIPAM and PpIX-DME-PNIPAM nanohydrogels suggest that the new hydrogels have potential for applications in photodynamic therapy

    Absence of long-range ordered reconstruction on the GaAs(311)A surface

    Get PDF
    We have investigated the decapped GaAs(311)A surface using both scanning tunneling microscopy and synchrotron-radiation photoemission. While our data are in broad agreement with the structural model of GaAs(311)A proposed in a recent study [Wassermeier et al., Phys. Rev. B 51, 14 721 (1995)], we find considerable differences in the surface order. In particular, the As dimer rows are unbroken over much shorter length scales and are highly kinked. We observe a correspondingly lower degree of anisotropy in the surface roughness than that previously reported. An (8×1) reconstruction was not observed. An analysis of As 3d and Ga 3d core-level photoemission spectra suggests that surface As atoms are in only one bonding configuration while surface Ga adopts two different bonding states. We discuss possible origins for the core-level spectra surface components

    Electronic structure of tetra(4-aminophenyl)porphyrin studied by photoemission, UV–Vis spectroscopy and density functional theory

    Get PDF
    The valence and conduction bands of a thin film of tetra(4-aminophenyl)porphyrin (TAPP) are investi-gated by direct and inverse photoemission as well as by comparison to density functional theory (DFT)calculations. By projecting the electronic eigenfunctions onto the molecular framework it was possibleto interpret the origin of each spectroscopic feature. Although the majority of the photoemission spec-trum is attributed to the unsubstituted tetraphenylporphyrin (TPP) parent molecule, several featuresare clearly due to the amino substitution. Substitution also has important consequences for the energypositions of the frontier orbitals and therefore on the low-energy electronic excitations. The measuredelectronic transport energy gap (Eg= 1.85 eV) between the highest occupied molecular orbital (HOMO)and lowest unoccupied (LUMO) in TAPP is found to be significantly reduced with respect to TPP. More-over, an increased energy separation between the two highest occupied states (HOMO and HOMO−1) isfound both experimentally and by DFT calculations. Such evidence is attributed to an increased HOMOorbital destabilization due to an enhanced electron-donor character of the phenyl substituents uponamino functionalization. Finally, the above findings together with further time-dependent DFT calcula-tions are used to interpret the effect of the amino groups on the UV–Vis absorption spectrum, namely anoverall red-shift of the spectrum and remarkable intensity changes within the Q band.© 2017 Elsevier B.V
    corecore