29 research outputs found

    Multicomponent Antifriction Composite Based on Extrudable Matrix "UHMWPE - HDPE-g-VTMS - PP" for Additive Manufacturing

    Get PDF
    Tribomechanical properties of antifriction composites based on the extrudable matrix "UHMWPE+17 wt. % HDPE-g-VTMS+12 wt. % PP" with chopped fiberglass formed by three methods: Hot Pressing of Powders (HPP), Hot Pressing of Granules (HPG) and Fused Deposition Modeling (FDM) was studied. It has been found that a composite fabricated by the FDM method possesses the highest strength properties (elastic modulus, yield strength and tensile strength). It is shown that tribological properties (friction coefficient, volumetric wear) of composites fabricated by the three methods are close to each other that is related to impact of the reinforcing filler (fiberglass). The latter takes on compressive and shearing loads during tribo-loading and improves wear resistance of the composite. The studied multicomponent UHMWPE based composite is recommended for use as a feedstock for the manufacturing antifriction products by additive manufacturing

    Insulating refractories for duty in controlled gas atmospheres

    No full text

    UHMWPE-Based Glass-Fiber Composites Fabricated by FDM. Multiscaling Aspects of Design, Manufacturing and Performance

    No full text
    The aim of the paper was to improve the functional properties of composites based on ultra-high molecular weight polyethylene (UHMWPE) by loading with reinforcing fibers. It was achieved by designing the optimal composition for its subsequent use as a feedstock for 3D-printing of guides for roller and plate chains, conveyors, etc. As a result, it was experimentally determined that loading UHMWPE with 17% high density polyethylene grafted with VinylTriMethoxySilane (HDPE-g-VTMS) was able to bind 5% glass fillers of different aspect ratios, thereby determining the optimal mechanical and tribological properties of the composites. Further increasing the content of the glass fillers caused a deterioration in their tribological properties due to insufficient adhesion of the extrudable matrix due to the excessive filler loading. A multi-level approach was implemented to design the high-strength anti-friction β€˜UHMWPE+17%HDPE-g-VTMS+12%PP’-based composites using computer-aided algorithms. This resulted in the determination of the main parameters that provided their predefined mechanical and tribological properties and enabled the assessment of the possible load-speed conditions for their operation in friction units. The uniform distribution of the fillers in the matrix, the pattern of the formed supermolecular structure and, as a consequence, the mechanical and tribological properties of the composites were achieved by optimizing the values of the main control parameters (the number of processing passes in the extruder and the aspect ratio of the glass fillers)

    UHMWPE-Based Glass-Fiber Composites Fabricated by FDM. Multiscaling Aspects of Design, Manufacturing and Performance

    No full text
    The aim of the paper was to improve the functional properties of composites based on ultra-high molecular weight polyethylene (UHMWPE) by loading with reinforcing fibers. It was achieved by designing the optimal composition for its subsequent use as a feedstock for 3D-printing of guides for roller and plate chains, conveyors, etc. As a result, it was experimentally determined that loading UHMWPE with 17% high density polyethylene grafted with VinylTriMethoxySilane (HDPE-g-VTMS) was able to bind 5% glass fillers of different aspect ratios, thereby determining the optimal mechanical and tribological properties of the composites. Further increasing the content of the glass fillers caused a deterioration in their tribological properties due to insufficient adhesion of the extrudable matrix due to the excessive filler loading. A multi-level approach was implemented to design the high-strength anti-friction β€˜UHMWPE+17%HDPE-g-VTMS+12%PP’-based composites using computer-aided algorithms. This resulted in the determination of the main parameters that provided their predefined mechanical and tribological properties and enabled the assessment of the possible load-speed conditions for their operation in friction units. The uniform distribution of the fillers in the matrix, the pattern of the formed supermolecular structure and, as a consequence, the mechanical and tribological properties of the composites were achieved by optimizing the values of the main control parameters (the number of processing passes in the extruder and the aspect ratio of the glass fillers)

    Effect of Transfer Film on Tribological Properties of Anti-Friction PEI- and PI-Based Composites at Elevated Temperatures

    No full text
    The structure, mechanical and tribological properties of the PEI- and PI-based composites reinforced with Chopped Carbon Fibers (CCF) and loaded with commercially available micron-sized solid lubricant fillers of various nature (polymeric-PTFE, and crystalline-Gr and MoS2) were studied in the temperature range of 23–180 (240) °C. It was shown that tribological properties of these ternary composites were determined by the regularities of the transfer film (TF) adherence on their wear track surfaces. The patterns of TFs formation depended on the chemical structure of the polymer matrix (stiffness/flexibility) as well as the tribological test temperatures. Loading with PTFE solid lubricant particles, along with the strengthening effect of CCF, facilitated the formation and fixation of the TF on the sliding surfaces of the more compliant PEI-based composite at room temperature. In this case, a very low coefficient of friction (CoF) value of about 0.05 was observed. For the more rigid identically filled PI-based composite, the CoF value was twice as high under the same conditions. At elevated temperatures, rising both CoF levels and oscillation of their values made it difficult to retain the non-polar PTFE transfer film on the sliding surfaces of the PI-based composite. As a result, friction of the ceramic counterpart proceeded over the composite surface without any protecting TF at T ≥ 180 °C. For the sample with the more flexible PEI matrix, the PTFE-containing TF was retained on its sliding surface, providing a low WR level even under CoF rising and oscillating conditions. A similar analysis was carried out for the less efficient crystalline solid lubricant filler MoS2
    corecore