567 research outputs found
The South African Banking Director Network: An Investigation Into Interlocking Directorships Using Social Network Analysis (SNA)
The theory of complex systems has gained significant ground in recent years, and with it, complex network theory has become an essential approach to complex systems. This study follows international trends in examining the interlocking South African bank director network using social network analysis (SNA), which is shown to be a highly connected social network that has ties to many South African industries, including healthcare, mining, and education. The most highly connected directors and companies are identified, along with those that are most central to the network, and those that serve important bridging functions in facilitating network coherence. As this study is exploratory, numerous suggestions are also made for further research
André P. Brink se posisie in die Afrikaanse literêre sisteem van die 1960’s
This article investigates Andre P. Brink’s role and position in the Afrikaans literary system of the 1960s. It is found that Brink was a very active role player in drama and prose, both as a writer and as a critic, and his activity is compared with every other role player in these subsystems. The paper examines which texts were studied by the largest number of persons in the whole literary system as well as in the subsystems of the drama and prose, and it is indicated that Brink’s texts played an important role in this respect by garnering the attention of a large number of critics and literary historians. Finally, Brink’s texts are positioned in the entire Afrikaans literary system of the decade, and it is found that his works occupy a central position
Ensemble CNN Networks for GBM Tumors Segmentation Using Multi-parametric MRI
Glioblastomas are the most aggressive fast-growing primary brain cancer which originate in the glial cells of the brain. Accurate identification of the malignant brain tumor and its sub-regions is still one of the most challenging problems in medical image segmentation. The Brain Tumor Segmentation Challenge (BraTS) has been a popular benchmark for automatic brain glioblastomas segmentation algorithms since its initiation. In this year, BraTS 2021 challenge provides the largest multi-parametric (mpMRI) dataset of 2,000 pre-operative patients. In this paper, we propose a new aggregation of two deep learning frameworks namely, DeepSeg and nnU-Net for automatic glioblastoma recognition in pre-operative mpMRI. Our ensemble method obtains Dice similarity scores of 92.00, 87.33, and 84.10 and Hausdorff Distances of 3.81, 8.91, and 16.02 for the enhancing tumor, tumor core, and whole tumor regions, respectively, on the BraTS 2021 validation set, ranking us among the top ten teams. These experimental findings provide evidence that it can be readily applied clinically and thereby aiding in the brain cancer prognosis, therapy planning, and therapy response monitoring. A docker image for reproducing our segmentation results is available online at https://hub.docker.com/r/razeineldin/deepseg21
Self-supervised iRegNet for the Registration of Longitudinal Brain MRI of Diffuse Glioma Patients
Reliable and accurate registration of patient-specific brain magnetic
resonance imaging (MRI) scans containing pathologies is challenging due to
tissue appearance changes. This paper describes our contribution to the
Registration of the longitudinal brain MRI task of the Brain Tumor Sequence
Registration Challenge 2022 (BraTS-Reg 2022). We developed an enhanced
unsupervised learning-based method that extends the iRegNet. In particular,
incorporating an unsupervised learning-based paradigm as well as several minor
modifications to the network pipeline, allows the enhanced iRegNet method to
achieve respectable results. Experimental findings show that the enhanced
self-supervised model is able to improve the initial mean median registration
absolute error (MAE) from 8.20 (7.62) mm to the lowest value of 3.51 (3.50) for
the training set while achieving an MAE of 2.93 (1.63) mm for the validation
set. Additional qualitative validation of this study was conducted through
overlaying pre-post MRI pairs before and after the de-formable registration.
The proposed method scored 5th place during the testing phase of the MICCAI
BraTS-Reg 2022 challenge. The docker image to reproduce our BraTS-Reg
submission results will be publicly available.Comment: Accepted in the MICCAI BraTS-Reg 2022 Challenge (as part of the
BrainLes workshop proceedings distributed by Springer LNCS
Model-informed target product profiles of long-acting-injectables for use as seasonal malaria prevention
Seasonal malaria chemoprevention (SMC) has proven highly efficacious in reducing malaria incidence. However, the continued success of SMC is threatened by the spread of resistance against one of its main preventive ingredients, Sulfadoxine-Pyrimethamine (SP), operational challenges in delivery, and incomplete adherence to the regimens. Via a simulation study with an individual-based model of malaria dynamics, we provide quantitative evidence to assess long-acting injectables (LAIs) as potential alternatives to SMC. We explored the predicted impact of a range of novel preventive LAIs as a seasonal prevention tool in children aged three months to five years old during late-stage clinical trials and at implementation. LAIs were co-administered with a blood-stage clearing drug once at the beginning of the transmission season. We found the establishment of non-inferiority of LAIs to standard 3 or 4 rounds of SMC with SP-amodiaquine was challenging in clinical trial stages due to high intervention deployment coverage. However, our analysis of implementation settings where the achievable SMC coverage was much lower, show LAIs with fewer visits per season are potential suitable replacements to SMC. Suitability as a replacement with higher impact is possible if the duration of protection of LAIs covered the duration of the transmission season. Furthermore, optimising LAIs coverage and protective efficacy half-life via simulation analysis in settings with an SMC coverage of 60% revealed important trade-offs between protective efficacy decay and deployment coverage. Our analysis additionally highlights that for seasonal deployment for LAIs, it will be necessary to investigate the protective efficacy decay as early as possible during clinical development to ensure a well-informed candidate selection process
DeepSeg: Deep Neural Network Framework for Automatic Brain Tumor Segmentation using Magnetic Resonance FLAIR Images
Purpose: Gliomas are the most common and aggressive type of brain tumors due
to their infiltrative nature and rapid progression. The process of
distinguishing tumor boundaries from healthy cells is still a challenging task
in the clinical routine. Fluid-Attenuated Inversion Recovery (FLAIR) MRI
modality can provide the physician with information about tumor infiltration.
Therefore, this paper proposes a new generic deep learning architecture; namely
DeepSeg for fully automated detection and segmentation of the brain lesion
using FLAIR MRI data.
Methods: The developed DeepSeg is a modular decoupling framework. It consists
of two connected core parts based on an encoding and decoding relationship. The
encoder part is a convolutional neural network (CNN) responsible for spatial
information extraction. The resulting semantic map is inserted into the decoder
part to get the full resolution probability map. Based on modified U-Net
architecture, different CNN models such as Residual Neural Network (ResNet),
Dense Convolutional Network (DenseNet), and NASNet have been utilized in this
study.
Results: The proposed deep learning architectures have been successfully
tested and evaluated on-line based on MRI datasets of Brain Tumor Segmentation
(BraTS 2019) challenge, including s336 cases as training data and 125 cases for
validation data. The dice and Hausdorff distance scores of obtained
segmentation results are about 0.81 to 0.84 and 9.8 to 19.7 correspondingly.
Conclusion: This study showed successful feasibility and comparative
performance of applying different deep learning models in a new DeepSeg
framework for automated brain tumor segmentation in FLAIR MR images. The
proposed DeepSeg is open-source and freely available at
https://github.com/razeineldin/DeepSeg/.Comment: Accepted to International Journal of Computer Assisted Radiology and
Surger
A weighted director network analysis of the big four banks on the Johannesburg Stock Exchange
Background:Â Company director networks have been studied for many countries, including South Africa, from the perspective of network theory. However, most studies of company director networks focus on the overall structure of the network, that is, by conducting a macro-level analysis.
Aim:Â In this study, we conducted a node-level analysis to investigate whether the four major South African banks, namely, Barclays Africa Group Ltd (now ABSA Group Limited), Nedbank Group Ltd, Standard Bank Group Ltd and FirstRand Ltd, occupy central roles in the company director network on the Johannesburg Stock Exchange (JSE).
Setting:Â Social networks provide a vital source of information and are therefore an important field of study in business.
Methods:Â We use degree-, betweenness- and closeness centrality, as well as strength, and a force-directed layout to investigate whether these four banks occupy key positions in the company director network on the JSE.
Results:Â We show that these four banks occupy central roles on the JSE. The direct connections of these companies are also identified, and findings are compared to some overseas studies.
Conclusion:Â This study concludes that the said four major banks occupy key positions on the JSE
Slicer-DeepSeg: Open-Source Deep Learning Toolkit for Brain Tumour Segmentation
Purpose
Computerized medical imaging processing assists neurosurgeons to localize tumours precisely. It plays a key role in recent image-guided neurosurgery. Hence, we developed a new open-source toolkit, namely Slicer-DeepSeg, for efficient and automatic brain tumour segmentation based on deep learning methodologies for aiding clinical brain research.
Methods
Our developed toolkit consists of three main components. First, Slicer-DeepSeg extends the 3D Slicer application and thus provides support for multiple data input/ output data formats and 3D visualization libraries. Second, Slicer core modules offer powerful image processing and analysis utilities. Third, the Slicer-DeepSeg extension provides a customized GUI for brain tumour segmentation using deep learning-based methods.
Results
The developed Slicer-DeepSeg was validated using a public dataset of high-grade glioma patients. The results showed that our proposed platform’s performance considerably outperforms other 3D Slicer cloud-based approaches.
Conclusions
Developed Slicer-DeepSeg allows the development of novel AI-assisted medical applications in neurosurgery. Moreover, it can enhance the outcomes of computer-aided diagnosis of brain tumours. Open-source Slicer-DeepSeg is available at github.com/razeineldin/Slicer-DeepSeg
Distinct functions for anterograde and retrograde sorting of SORLA in amyloidogenic processes in the brain
SORLA is a neuronal sorting receptor implicated both in sporadic and familial forms of AD. SORLA reduces the amyloidogenic burden by two mechanisms, either by rerouting internalized APP molecules from endosomes to the trans-Golgi network (TGN) to prevent proteolytic processing or by directing newly produced Aβ to lysosomes for catabolism. Studies in cell lines suggested that the interaction of SORLA with cytosolic adaptors retromer and GGA is required for receptor sorting to and from the TGN. However, the relevance of anterograde or retrograde trafficking for SORLA activity in vivo remained largely unexplored. Here, we generated mouse models expressing SORLA variants lacking binding sites for GGA or retromer to query this concept in the brain. Disruption of retromer binding resulted in a retrograde-sorting defect with accumulation of SORLA in endosomes and depletion from the TGN, and in an overall enhanced APP processing. In contrast, disruption of the GGA interaction did not impact APP processing but caused increased brain Aβ levels, a mechanism attributed to a defect in anterograde lysosomal targeting of Aβ. Our findings substantiated the significance of adaptor-mediated sorting for SORLA activities in vivo, and they uncovered that anterograde and retrograde sorting paths may serve discrete receptor functions in amyloidogenic processes
Deep automatic segmentation of brain tumours in interventional ultrasound data
Intraoperative imaging can assist neurosurgeons to define brain tumours and other surrounding brain structures. Interventional ultrasound (iUS) is a convenient modality with fast scan times. However, iUS data may suffer from noise and artefacts which limit their interpretation during brain surgery. In this work, we use two deep learning networks, namely UNet and TransUNet, to make automatic and accurate segmentation of the brain tumour in iUS data. Experiments were conducted on a dataset of 27iUS volumes. The outcomes show that using a transformer with UNet is advantageous providing an efficient segmentation modelling long-range dependencies between each iUS image. In particular, the enhanced TransUNet was able to predict cavity segmentation in iUS data with an inference rate of more than 125 FPS.These promising results suggest that deep learning networks can be successfully deployed to assist neurosurgeons in the operating room
- …