11 research outputs found

    Lactic Acid and Its Use in Food Industries)

    Full text link
    Lactic acid is an organic acid which is naturally found in the fermented products such as yoghurt, cheese, pickle, beer, wine and meat products. The properties, productions, and use of the lactic acid in food industries will be discussed in this report. Lactic acid is also widely used in textile industry, cosmetics pharmacy, tanning, and plastic industry

    Topical caffeine delivery using biocellulose membranes: a potential innovative system for cellulite treatment

    No full text
    In this study, biocellulose (BC) membranes have been investigated as caffeine topical delivery systems, for the potential treatment of cellulite. BC-caffeine membranes were prepared by a simple approach and the permeation of caffeine through human epidermis, from BC or from conventional formulation systems (solution and gel), was compared in vitro to assess their therapeutic applicability. Diffusion studies with Franz cells showed that the incorporation of caffeine in BC membranes provided lower permeation rates than those obtained with the conventional formulations. These results combined with the possibility of producing BC membranes with different shapes demonstrate that these materials are promising biosystems for topical delivery of caffeine, showing reproducibility and an extended and predictable caffeine release over time, leading to their potential use for cellulite attenuation

    Production of bacterial cellulose from alternative low-cost substrates

    No full text
    Cellulose is the most widely used biopolymer on Earth. Its large-scale production is mainly from lignocellulosic material (plant origin), however, this plant material is not the only source of this valuable polymer, since microorganisms, like bacteria, naturally produce cellulose, especially those of the genus Komagateibacter (formerly Gluconacetobacter). This type of cellulose is of great interest because of its unique properties such as high purity and resistance, nevertheless, it has not been produced in a large-scale industrial process to date using low-cost substrates, one of the key aspects that should be considered for the industrial obtaining of any biotechnological product. As a main finding we found that the majority of low-cost culture media discussed could have the potential to produce bacterial cellulose on an industrial scale, since in most cases they yield more cellulose (with similar physical chemical characteristics) to those obtained in standard media. However, for an appropriate large-scale production, a specific knowledge about these by-products (since their composition and characteristics, which have a direct impact on the productivity of this biopolymer, are quite heterogeneous) and a proper standardization of them would also be required. Research staff of many industries could use the information presented here to help design a process to use their respective byproducts as substrate to obtain a product with a high added value as bacterial cellulose
    corecore