3,467 research outputs found

    Master Console System Monitoring and Control Development

    Get PDF
    The Master Console internship during the summer of 2013 involved the development of firing room displays and support applications at the John F. Kennedy Space Center (KSC). This position was with the Master Console Product Group (MCPG) on the Launch Control System (LCS) project. This project is responsible for the System Monitoring and Control (SMC) and Record and Retrieval (R&R) of launch operations data. The Master Console is responsible for: loading the correct software into each of the remaining consoles in the firing room, connecting the proper data paths to and from the launch vehicle and all ground support equipment, and initializing the entire firing room system to begin processing. During my internship, I created control scripts using the Application Control Language (ACL) to analyze the health and status of Kennedy Ground Control System (KGCS) programmable logic controllers (PLCs). This application provides a system health and status display I created with summarized data for use by Master Console Operators (MCO) to monitor and verify the integrity of KGCS subsystems

    Master Console System Monitoring and Control Development

    Get PDF
    The Master Console internship during the spring of 2013 involved the development of firing room displays at the John F. Kennedy Space Center (KSC). This position was with the Master Console Product Group (MCPG) on the Launch Control System (LCS) project. This project is responsible for the System Monitoring and Control (SMC) and Record and Retrieval (R&R) of launch operations data. The Master Console is responsible for: loading the correct software into each of the remaining consoles in the firing room, connecting the proper data paths to and from the launch vehicle and all ground support equipment, and initializing the entire firing room system to begin processing. During my internship, I developed a system health and status display for use by Master Console Operators (MCO) to monitor and verify the integrity of the servers, gateways, network switches, and firewalls used in the firing room

    Effects of a Triphasic Block Method on Power in Collegiate Basketball Players

    Get PDF
    Implementing a non-traditional method for a training cycle may serve as an alternative means of developing maximal strength and power. Seven male Division I intercollegiate basketball players (age=21.0±0.63 yrs, ht=191.86±7.24cm, wt=94.8±14.9kg, training experience = 2.2 ± 1.3 yrs) who recently completed a 5-month competitive season were recruited for this study. The testing took place during the off-season, when the players were not involved in NCAA competition. Subjects underwent a three-week preparation phase, followed by a pre-test vertical jump (CMJ), standing broad jump (SBJ), and back squat 1-repetition max (1RM). Prior to all testing sessions, the participants participated in a dynamic warm-up, and were allowed to familiarize themselves with each test. The training methods were developed as three, two-week phases, with the triphasic and plyometric methods included “French contrast training” along with the barbell back squat (BBS). The first phase had an eccentric emphasis, the second phase an isometric emphasis, and the third phase had a concentric emphasis. With the respective phase, the contraction emphasis was applied to the BBS, either completing 6-second eccentric portions, 3-second isometric portions, or dynamic concentric portions of the exercise. Each set was followed by a series of both reactive plyometrics, followed by resisted plyometrics. The triphasic emphasis was rotated throughout a 6-week period. At the end of six weeks, the participants had a recovery week, then underwent post-testing. Data was analyzed between the pre-test and post-test CMJ, SBJ and 1RM. There was a significant difference between CMJ improvement following a Triphasic Block Method (TBM) vs. a traditional method of training (

    Living IoT: A Flying Wireless Platform on Live Insects

    Full text link
    Sensor networks with devices capable of moving could enable applications ranging from precision irrigation to environmental sensing. Using mechanical drones to move sensors, however, severely limits operation time since flight time is limited by the energy density of current battery technology. We explore an alternative, biology-based solution: integrate sensing, computing and communication functionalities onto live flying insects to create a mobile IoT platform. Such an approach takes advantage of these tiny, highly efficient biological insects which are ubiquitous in many outdoor ecosystems, to essentially provide mobility for free. Doing so however requires addressing key technical challenges of power, size, weight and self-localization in order for the insects to perform location-dependent sensing operations as they carry our IoT payload through the environment. We develop and deploy our platform on bumblebees which includes backscatter communication, low-power self-localization hardware, sensors, and a power source. We show that our platform is capable of sensing, backscattering data at 1 kbps when the insects are back at the hive, and localizing itself up to distances of 80 m from the access points, all within a total weight budget of 102 mg.Comment: Co-primary authors: Vikram Iyer, Rajalakshmi Nandakumar, Anran Wang, In Proceedings of Mobicom. ACM, New York, NY, USA, 15 pages, 201

    Predictors of Latent Trajectory Classes of Physical Dating Violence Victimization

    Get PDF
    This study identified classes of developmental trajectories of physical dating violence victimization from grades 8 to 12 and examined theoretically-based risk factors that distinguished among trajectory classes. Data were from a multi-wave longitudinal study spanning 8th through 12th grade (n = 2,566; 51.9% female). Growth mixture models were used to identify trajectory classes of physical dating violence victimization separately for girls and boys. Logistic and multinomial logistic regressions were used to identify situational and target vulnerability factors associated with the trajectory classes. For girls, three trajectory classes were identified: a low/non-involved class; a moderate class where victimization increased slightly until the 10th grade and then decreased through the 12th grade; and a high class where victimization started at a higher level in the 8th grade, increased substantially until the 10th grade, and then decreased until the 12th grade. For males, two classes were identified: a low/non-involved class, and a victimized class where victimization increased slightly until the 9th grade, decreased until the 11th grade, and then increased again through the 12th grade. In bivariate analyses, almost all of the situational and target vulnerability risk factors distinguished the victimization classes from the non-involved classes. However, when all risk factors and control variables were in the model, alcohol use (a situational vulnerability) was the only factor that distinguished membership in the moderate trajectory class from the non-involved class for girls; anxiety and being victimized by peers (target vulnerability factors) were the factors that distinguished the high from the non-involved classes for the girls; and victimization by peers was the only factor distinguishing the victimized from the non-involved class for boys. These findings contribute to our understanding of the heterogeneity in physical dating violence victimization during adolescence and the malleable risk factors associated with each trajectory class for boys and girls

    Prospects for local co-governance

    Get PDF
    British local authorities and their partners are increasingly developing new ways of working together with local communities. The nature of this co-working, however, is complex, multi-faceted and little understood. This article argues for greater clarity of thinking on the topic, by analysing this co-working as a form of political co-governance, and drawing attention in particular to issues of scale and democracy. Using evidence from a study of 43 local authority areas, 16 authorities are identified where co-governance is practised, following three main types of approach: service-influencing, service-delivering and parish council developing. It is concluded that strengthening political co-governance is essential for a healthy democracy

    Distinct APC subtypes drive spatially segregated CD4+ and CD8+ T-Cell effector activity during skin infection with HSV-1

    No full text
    Efficient infection control requires potent T-cell responses at sites of pathogen replication. However, the regulation of T-cell effector function in situ remains poorly understood. Here, we show key differences in the regulation of effector activity between CD4+ and CD8+ T-cells during skin infection with HSV-1. IFN-Îł-producing CD4+ T cells disseminated widely throughout the skin and draining lymph nodes (LN), clearly exceeding the epithelial distribution of infectious virus. By contrast, IFN-Îł-producing CD8+ T cells were only found within the infected epidermal layer of the skin and associated hair follicles. Mechanistically, while various subsets of lymphoid- and skin-derived dendritic cells (DC) elicited IFN-Îł production by CD4+ T cells, CD8+ T cells responded exclusively to infected epidermal cells directly presenting viral antigen. Notably, uninfected cross-presenting DCs from both skin and LNs failed to trigger IFN-Îł production by CD8+ T-cells. Thus, we describe a previously unappreciated complexity in the regulation of CD4+ and CD8+ T-cell effector activity that is subset-specific, microanatomically distinct and involves largely non-overlapping types of antigen-presenting cells (APC).The work was funded by grant (APP628423 and APP1059514) and fellowship support from the National Health and Medical Research Council Australia (NHMRC)and the Australian Research Council (ARC). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
    • …
    corecore