1,017 research outputs found

    Benchmarking projective simulation in navigation problems

    Full text link
    Projective simulation (PS) is a model for intelligent agents with a deliberation capacity that is based on episodic memory. The model has been shown to provide a flexible framework for constructing reinforcement-learning agents, and it allows for quantum mechanical generalization, which leads to a speed-up in deliberation time. PS agents have been applied successfully in the context of complex skill learning in robotics, and in the design of state-of-the-art quantum experiments. In this paper, we study the performance of projective simulation in two benchmarking problems in navigation, namely the grid world and the mountain car problem. The performance of PS is compared to standard tabular reinforcement learning approaches, Q-learning and SARSA. Our comparison demonstrates that the performance of PS and standard learning approaches are qualitatively and quantitatively similar, while it is much easier to choose optimal model parameters in case of projective simulation, with a reduced computational effort of one to two orders of magnitude. Our results show that the projective simulation model stands out for its simplicity in terms of the number of model parameters, which makes it simple to set up the learning agent in unknown task environments.Comment: 8 pages, 10 figure

    Teleporting bipartite entanglement using maximally entangled mixed channels

    Get PDF
    The ability to teleport entanglement through maximally entangled mixed states as defined by concurrence and linear entropy is studied. We show how the teleported entanglement depends on the quality of the quantum channel used, as defined through its entanglement and mixedness, as well as the form of the target state to be teleported. We present new results based on the fidelity of the teleported state as well as an experimental set-up that is immediately implementable with currently available technology.Comment: 8 pages, 7 figures, RevTeX4, Accepted for publication in the IJQI special issue on Distributed Quantum Information Processin

    Projective simulation with generalization

    Full text link
    The ability to generalize is an important feature of any intelligent agent. Not only because it may allow the agent to cope with large amounts of data, but also because in some environments, an agent with no generalization capabilities cannot learn. In this work we outline several criteria for generalization, and present a dynamic and autonomous machinery that enables projective simulation agents to meaningfully generalize. Projective simulation, a novel, physical approach to artificial intelligence, was recently shown to perform well in standard reinforcement learning problems, with applications in advanced robotics as well as quantum experiments. Both the basic projective simulation model and the presented generalization machinery are based on very simple principles. This allows us to provide a full analytical analysis of the agent's performance and to illustrate the benefit the agent gains by generalizing. Specifically, we show that already in basic (but extreme) environments, learning without generalization may be impossible, and demonstrate how the presented generalization machinery enables the projective simulation agent to learn.Comment: 14 pages, 9 figure

    Simple proof of confidentiality for private quantum channels in noisy environments

    Full text link
    Complete security proofs for quantum communication protocols can be notoriously involved, which convolutes their verification, and obfuscates the key physical insights the security finally relies on. In such cases, for the majority of the community, the utility of such proofs may be restricted. Here we provide a simple proof of confidentiality for parallel quantum channels established via entanglement distillation based on hashing, in the presence of noise, and a malicious eavesdropper who is restricted only by the laws of quantum mechanics. The direct contribution lies in improving the linear confidentiality levels of recurrence-type entanglement distillation protocols to exponential levels for hashing protocols. The proof directly exploits the security relevant physical properties: measurement-based quantum computation with resource states and the separation of Bell-pairs from an eavesdropper. The proof also holds for situations where Eve has full control over the input states, and obtains all information about the operations and noise applied by the parties. The resulting state after hashing is private, i.e., disentangled from the eavesdropper. Moreover, the noise regimes for entanglement distillation and confidentiality do not coincide: Confidentiality can be guaranteed even in situation where entanglement distillation fails. We extend our results to multiparty situations which are of special interest for secure quantum networks.Comment: 5 + 11 pages, 0 + 4 figures, A. Pirker and M. Zwerger contributed equally to this work, replaced with accepted versio

    Long-range big quantum-data transmission

    Full text link
    We introduce an alternative type of quantum repeater for long-range quantum communication with improved scaling with the distance. We show that by employing hashing, a deterministic entanglement distillation protocol with one-way communication, one obtains a scalable scheme that allows one to reach arbitrary distances, with constant overhead in resources per repeater station, and ultrahigh rates. In practical terms, we show that also with moderate resources of a few hundred qubits at each repeater station, one can reach intercontinental distances. At the same time, a measurement-based implementation allows one to tolerate high loss, but also operational and memory errors of the order of several percent per qubit. This opens the way for long-distance communication of big quantum data.Comment: revised manuscript including new result

    Quantum processing photonic states in optical lattices

    Get PDF
    The mapping of photonic states to collective excitations of atomic ensembles is a powerful tool which finds a useful application in the realization of quantum memories and quantum repeaters. In this work we show that cold atoms in optical lattices can be used to perform an entangling unitary operation on the transferred atomic excitations. After the release of the quantum atomic state, our protocol results in a deterministic two qubit gate for photons. The proposed scheme is feasible with current experimental techniques and robust against the dominant sources of noise.Comment: 4 pages, 4 figure
    • …
    corecore