1,703 research outputs found

    Optical quality assurance of GEM foils

    Full text link
    An analysis software was developed for the high aspect ratio optical scanning system in the Detec- tor Laboratory of the University of Helsinki and the Helsinki Institute of Physics. The system is used e.g. in the quality assurance of the GEM-TPC detectors being developed for the beam diagnostics system of the SuperFRS at future FAIR facility. The software was tested by analyzing five CERN standard GEM foils scanned with the optical scanning system. The measurement uncertainty of the diameter of the GEM holes and the pitch of the hole pattern was found to be 0.5 {\mu}m and 0.3 {\mu}m, respectively. The software design and the performance are discussed. The correlation between the GEM hole size distribution and the corresponding gain variation was studied by comparing them against a detailed gain mapping of a foil and a set of six lower precision control measurements. It can be seen that a qualitative estimation of the behavior of the local variation in gain across the GEM foil can be made based on the measured sizes of the outer and inner holes.Comment: 12 pages, 29 figure

    Employing infrared microscopy (IRM) in combination with a pre-trained neural network to visualise and analyse the defect distribution in Cadmium Telluride crystals

    Get PDF
    While Cadmium Telluride (CdTe) excels in terms of photon radiation absorption properties and outperforms silicon (Si) in this respect, the crystal growth, characterization and processing into a radiation detector is much more complicated. Additionally, large concentrations of extended crystallographic defects, such as grain boundaries, twins, and tellurium (Te) inclusions, vary from crystal to crystal and can reduce the spectroscopic performance of the processed detector. A quality assessment of the material prior to the complex fabrication process is therefore crucial. To locate the Te-defects, we scan the crystals with infrared microscopy (IRM) in different layers, obtaining a 3D view of the defect distribution. This provides us with important information on the defect density and locations of Te inclusions, and thus a handle to assess the quality of the material. For the classification of defects in the large amount of IRM image data, a convolutional neural network is employed. From the post-processed and analysed IRM data, 3D defect maps of the CdTe crystals are created, which make different patterns of defect agglomerations inside the crystals visible. In total, more than 100 crystals were scanned with the current IRM setup. In this paper, we compare two crystal batches, each consisting of 12 samples. We find significant differences in the defect distributions of the crystals.Peer reviewe

    Modeling the impact of defects on the charge collection efficiency of a Cadmium Telluride detector

    Get PDF
    Cadmium telluride is a favorable material for X-ray detection as it has an outstanding characteristic for room temperature operation. It is a high-Z material with excellent photon radiation absorption properties. However, CdTe single crystals may include a large number of extended crystallographic defects, such as grain boundaries, twins, and tellurium (Te) inclusions, which can have an impact on detector performance. A Technology Computer Aided Design (TCAD) local defect model has been developed to investigate the effects of local defects on charge collection efficiency (CCE). We studied a 1 mm thick Schottky-type CdTe radiation detector with transient current technique by using a red laser at room temperature. By raster scanning the detector surface we were able to study signal shaping within the bulk, and to locate surface defects by observing their impact on the CCE. In this paper we present our TCAD model with localized defect, and compare the simulation results to TCT measurements. In the model an inclusion with a diameter of 10 mu m was assumed. The center of the defect was positioned at 6 mu m distance from the surface. We show that the defect has a notable effect on current transients, which in turn affect the CCE of the CdTe detector. The simulated charge collection at the position of the defect decreases by 80 % in comparison to the defect-free case. The simulations show that the defects give a characteristic shape to TCT signal. This can further be used to detect defects in CdTe detectors and to estimate the overall defect density in the material.Peer reviewe

    Quality assessment of cadmium telluride as a detector material for multispectral medical imaging

    Get PDF
    Cadmiumtelluride (CdTe) is a high-Z material with excellent photon radiation absorption properties, making it a promising material to include in radiation detection technologies. However, the brittleness of CdTe crystals as well as their varying concentration of defects necessitate a thorough quality assessment before the complex detector processing procedure. We present our quality assessment of CdTe as a detector material for multispectralmedical imaging, a research which is conducted as part of the Consortium Project Multispectral Photon-counting for Medical Imaging and Beam characterization (MPMIB). The aim of the project is to develop novel CdTe detectors and obtain spectrum-per-pixel information that make the distinction between different radiation types and tissues possible. To evaluate the defect density inside the crystals - which can deteriorate the detector performance - we employ infrared microscopy (IRM). Posterior data analysis allows us to visualise the defect distributions as 3D defect maps. Additionally, we investigate front and backside differences of the material with current-voltage (IV) measurements to determine the preferred surface for the pixelisation of the crystal, and perform test measurements with the prototypes to provide feedback for further processing. We present the different parts of our quality assessment chain and will close with first experimental results obtained with one of our prototype photon-counting detectors in a small tomographic setup.Peer reviewe

    Diffraction and Total Cross-Section at the Tevatron and the LHC

    Get PDF
    At the Tevatron, the total p_bar-p cross-section has been measured by CDF at 546 GeV and 1.8 TeV, and by E710/E811 at 1.8 TeV. The two results at 1.8 TeV disagree by 2.6 standard deviations, introducing big uncertainties into extrapolations to higher energies. At the LHC, the TOTEM collaboration is preparing to resolve the ambiguity by measuring the total p-p cross-section with a precision of about 1 %. Like at the Tevatron experiments, the luminosity-independent method based on the Optical Theorem will be used. The Tevatron experiments have also performed a vast range of studies about soft and hard diffractive events, partly with antiproton tagging by Roman Pots, partly with rapidity gap tagging. At the LHC, the combined CMS/TOTEM experiments will carry out their diffractive programme with an unprecedented rapidity coverage and Roman Pot spectrometers on both sides of the interaction point. The physics menu comprises detailed studies of soft diffractive differential cross-sections, diffractive structure functions, rapidity gap survival and exclusive central production by Double Pomeron Exchange.Peer reviewe

    Characterization of magnetic Czochralski silicon devices with aluminium oxide field insulator : effect of oxygen precursor on electrical properties and radiation hardness

    Get PDF
    Aluminium oxide (Al2O3) has been proposed as an alternative to thermal silicon dioxide (SiO2) as field insulator and surface passivation for silicon detectors, where it could substitute p-stop/p-spray insulation implants between pixels due to its negative oxide charge, and enable capacitive coupling of segments by means of its higher dielectric constant. Al2O3 is commonly grown by atomic layer deposition (ALD), which allows the deposition of thin layers with excellent precision. In this work, we report the electrical characterization of single pad detectors (diodes) and MOS capacitors fabricated on magnetic Czochralski silicon substrates and using Al2O3 as field insulator. Devices are studied by capacitance-voltage, current-voltage, and transient current technique measurements. We evaluate the influence of the oxygen precursors in the ALD process, as well as the effect of gamma irradiation, on the properties of these devices. We observe that leakage currents in diodes before the onset of breakdown are low for all studied ALD processes. Charge collection as measured by transient current technique (TCT) is also independent of the choice of oxygen precursor. The Al2O3 films deposited with O-3 possess a higher negative oxide charge than films deposited by H2O, However, in diodes a higher oxide charge is linked to earlier breakdown, as has been predicted by simulation studies. A combination of H2O and O-3 precursors results in a good compromise between the beneficial properties provided by the respective individual precursors.Peer reviewe

    Proton-proton elastic scattering at the LHC energy of {\surd} = 7 TeV

    Full text link
    Proton-proton elastic scattering has been measured by the TOTEM experiment at the CERN Large Hadron Collider at {\surd}s = 7 TeV in dedicated runs with the Roman Pot detectors placed as close as seven times the transverse beam size (sbeam) from the outgoing beams. After careful study of the accelerator optics and the detector alignment, |t|, the square of four-momentum transferred in the elastic scattering process, has been determined with an uncertainty of d t = 0.1GeV p|t|. In this letter, first results of the differential cross section are presented covering a |t|-range from 0.36 to 2.5GeV2. The differential cross-section in the range 0.36 < |t| < 0.47 GeV2 is described by an exponential with a slope parameter B = (23.6{\pm}0.5stat {\pm}0.4syst)GeV-2, followed by a significant diffractive minimum at |t| = (0.53{\pm}0.01stat{\pm}0.01syst)GeV2. For |t|-values larger than ~ 1.5GeV2, the cross-section exhibits a power law behaviour with an exponent of -7.8_\pm} 0.3stat{\pm}0.1syst. When compared to predictions based on the different available models, the data show a strong discriminative power despite the small t-range covered.Comment: 12pages, 5 figures, CERN preprin

    LHC Optics Measurement with Proton Tracks Detected by the Roman Pots of the TOTEM Experiment

    Full text link
    Precise knowledge of the beam optics at the LHC is crucial to fulfil the physics goals of the TOTEM experiment, where the kinematics of the scattered protons is reconstructed with the near-beam telescopes -- so-called Roman Pots (RP). Before being detected, the protons' trajectories are influenced by the magnetic fields of the accelerator lattice. Thus precise understanding of the proton transport is of key importance for the experiment. A novel method of optics evaluation is proposed which exploits kinematical distributions of elastically scattered protons observed in the RPs. Theoretical predictions, as well as Monte Carlo studies, show that the residual uncertainty of this optics estimation method is smaller than 0.25 percent.Comment: 20 pages, 11 figures, 5 figures, to be submitted to New J. Phy

    Performance of the TOTEM Detectors at the LHC

    Get PDF
    The TOTEM Experiment is designed to measure the total proton-proton cross-section with the luminosity-independent method and to study elastic and diffractive pp scattering at the LHC. To achieve optimum forward coverage for charged particles emitted by the pp collisions in the interaction point IP5, two tracking telescopes, T1 and T2, are installed on each side of the IP in the pseudorapidity region 3.1 < = |eta | < = 6.5, and special movable beam-pipe insertions - called Roman Pots (RP) - are placed at distances of +- 147 m and +- 220 m from IP5. This article describes in detail the working of the TOTEM detector to produce physics results in the first three years of operation and data taking at the LHC.Comment: 40 pages, 31 figures, submitted to Int. J. Mod. Phys.

    Double diffractive cross-section measurement in the forward region at LHC

    Full text link
    The first double diffractive cross-section measurement in the very forward region has been carried out by the TOTEM experiment at the LHC with center-of-mass energy of sqrt(s)=7 TeV. By utilizing the very forward TOTEM tracking detectors T1 and T2, which extend up to |eta|=6.5, a clean sample of double diffractive pp events was extracted. From these events, we measured the cross-section sigma_DD =(116 +- 25) mub for events where both diffractive systems have 4.7 <|eta|_min < 6.5 .Comment: 5 pages, 1 figure, submitted for publicatio
    • …
    corecore