9 research outputs found

    Potential for use of industrial waste materials as filter media for removal of Al, Mo, As, V and Ga from alkaline drainage in constructed wetlands - Adsorption studies

    Get PDF
    The potential to remove Al, Mo, V, As and Ga from alkaline (pH 8.0-8.6) drainage originating from seawater neutralized bauxite processing residue storage areas using constructed wetland technology was studied in a laboratory study. Bauxite processing residue sand, bauxite, alum water treatment sludge and blast furnace slag were investigated as potential active filter materials. Al was shown to precipitate as Al(OH) in the pH range 7.0-8.0 in aqueous solution and 6.0-8.5 in the presence of silica sand particles that provided a surface for nucleation. For V As Mo and Ga, adsorption to the surfaces of the adsorbents decreased greatly at elevated pH values (>pH 6-9). Water treatment sludge and bauxite had a greater ability to adsorb V, As and Mo at high pH (As and V at pH 7-9 and Mo at pH 5-7) than processing sand and slag. Adsorption isotherm data for As and V onto all four adsorbent than processing sand and slag. Adsorption isotherm data for As and V onto all four adsorbent materials fitted equally well to the Langmuir and Freundlich equations but for Ga, and to a lesser extent Mo, the Freundlich equation gave higher R values. For all four ions, the maximum adsorption capacity (Langmuir value q) was greatest for water treatment sludge. Bauxite adsorbed more Mo, Ga and V than residue sand or slag. The pseudo-second order equation gave a better fit to the experimental kinetic data than the pseudo-first order model suggesting that chemisorption rather than diffusion/exchange was the rate limiting step to adsorption. It was concluded that water treatment sludge and bauxite were the most effective adsorbents and that for effective removal of the target ions the pH of the drainage water needs to be decreased to 6.0-7.0

    Sustainable Sources of Biomass for Bioremediation of Heavy Metals in Waste Water Derived from Coal-Fired Power Generation

    Get PDF
    Biosorption of heavy metals using dried algal biomass has been extensively described but rarely implemented. We contend this is because available algal biomass is a valuable product with a ready market. Therefore, we considered an alternative and practical approach to algal bioremediation in which algae were cultured directly in the waste water stream. We cultured three species of algae with and without nutrient addition in water that was contaminated with heavy metals from an Ash Dam associated with coal-fired power generation and tested metal uptake and bioremediation potential. All species achieved high concentrations of heavy metals (to 8% dry mass). Two key elements, V and As, reached concentrations in the biomass of 1543 mg.kg−1 DW and 137 mg.kg−1 DW. Growth rates were reduced by more than half in neat Ash Dam water than when nutrients were supplied in excess. Growth rate and bioconcentration were positively correlated for most elements, but some elements (e.g. Cd, Zn) were concentrated more when growth rates were lower, indicating the potential to tailor bioremediation depending on the pollutant. The cosmopolitan nature of the macroalgae studied, and their ability to grow and concentrate a suite of heavy metals from industrial wastes, highlights a clear benefit in the practical application of waste water bioremediation

    Investigating the Potential Toxicity of Hydraulic Fracturing Flowback and Produced Water Spills to Aquatic Animals in Freshwater Environments: A North American Perspective

    No full text
    corecore